Azlina Idris
Universiti Teknologi MARA

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Dielectric properties assessment of honey by using non-destructive dielectric spectroscopy Aslina Abu Bakar; Muhammad Aiman Najmi bin Rodzali; Rosfariza Radzali; Azlina Idris; Ahmad Rashidy Razali
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp189-200

Abstract

In this research the dielectric constant of three types of Malaysian honey has been investigated using a non-destructive measurement technique. The objective of this research is to assess the dielectric constant of the three types of honey in Malaysia using a non-destructive measurement technique known as an open-ended coaxial probe in the frequency range from 100 MHz to 10 GHz frequency. Analysis on the effect water concentration in honey on the dielectric constant and the effect of temperature on dielectric constant of honey has been conducted. The three types of honey that have been chosen to be investigated in this project are stingless bee honey, wild honey and commercial (organic) honey and together their water adulterated samples. For this research, the probe had been set up by setting a range of frequency from 100 MHz to 10 GHz and needs to be calibrated with three calibration methods namely open, short and reference water. From the result it was found that the higher the temperature of the honey and the higher percentage of water content in the honey, the dielectric constant is increased. The dielectric constants of all honeys decreased with increasing frequency in the measured frequency range and increased with increase percentage of water content and temperature.
A review on orchestration distributed systems for IoT smart services in fog computing Nor Syazwani Mohd Pakhrudin; Murizah Kassim; Azlina Idris
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1812-1822

Abstract

This paper provides a review of orchestration distributed systems for IoT smart services in fog computing. The cloud infrastructure alone cannot handle the flow of information with the abundance of data, devices and interactions. Thus, fog computing becomes a new paradigm to overcome the problem. One of the first challenges was to build the orchestration systems to activate the clouds and to execute tasks throughout the whole system that has to be considered to the situation in the large scale of geographical distance, heterogeneity and low latency to support the limitation of cloud computing. Some problems exist for orchestration distributed in fog computing are to fulfil with high reliability and low-delay requirements in the IoT applications system and to form a larger computer network like a fog network, at different geographic sites. This paper reviewed approximately 68 articles on orchestration distributed system for fog computing. The result shows the orchestration distribute system and some of the evaluation criteria for fog computing that have been compared in terms of Borg, Kubernetes, Swarm, Mesos, Aurora, heterogeneity, QoS management, scalability, mobility, federation, and interoperability. The significance of this study is to support the researcher in developing orchestration distributed systems for IoT smart services in fog computing focus on IR4.0 national agenda
Median codeword Shift (MCS) technique for PAPR reduction with low complexity in OFDM system Mohd Danial Rozaini; Azlina Idris; Darmawaty Mohd Ali; Ezmin Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (535.552 KB) | DOI: 10.11591/ijece.v9i6.pp4882-4888

Abstract

With the rapid development of today’s communication technology, the need for a system capable to improve spectral efficiency, high data rates and at the same time can reduce inter-symbol interference (ISI) is necessary. Orthogonal Frequency Division Multiplexing (OFDM) meet all the requirements needed. However, the high peak to average power ratio (PAPR) has become its major obstacle. This paper is focusing on the development of Median Codeword Shift (MCS), which a new PAPR reduction technique with the capability to reduce the computational complexity of the system. This can be achieved through codeword structure alterization and bit position manipulation by utilizing the circulant shift process. The simulation results revealed that the proposed technique overwhelm conventional OFDM and SCS with 24% improvement and 0.5 dB gap from SCS. In fact, the proposed technique possess a lower computational complexity by reducing 16.67% of the use of IFFT block in the system in contrast with SCS technique.
Cloud service analysis using round-robin algorithm for quality-of-service aware task placement for internet of things services Nor Syazwani Mohd Pakhrudin; Murizah Kassim; Azlina Idris
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp3464-3473

Abstract

Round-robin (RR) is a process approach to sharing resources that requires each user to get a turn using them in an agreed order in cloud computing. It is suited for time-sharing systems since it automatically reduces the problem of priority inversion, which are low-priority tasks delayed. The time quantum is limited, and only a one-time quantum process is allowed in round-robin scheduling. The objective of this research is to improve the functionality of the current RR method for scheduling actions in the cloud by lowering the average waiting, turnaround, and response time. CloudAnalyst tool was used to enhance the RR technique by changing the parameter value in optimizing the high accuracy and low cost. The result presents the achieved overall min and max response times are 36.69 and 650.30 ms for running 300 min RR. The cost for the virtual machines (VMs) is identified from $0.5 to $3. The longer the time used, the higher the cost of the data transfer. This research is significant in improving communication and the quality of relationships within groups.