Claim Missing Document
Check
Articles

Found 5 Documents
Search

Modeling and simulation of a 3-ф induction motor based on two types of WFA Ahmed J. Ali; Laith A. Khalaf; Ahmed H. Ahmed
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1105-1113

Abstract

This paper has been proposed to simulate the transient model of 3-Ф cage rotor induction motor based on winding function approach (WFA). According to this method the motor is assumed to be consist of an electrical circuits on both stator and rotor. The magneto motive forces (MMF) that have been generated by these circuits play a role for coupling them together. Then mutual and self-inductances will be easily computed using WFA. Two types of WFA have been used to build and simulate the model of the induction motor. In the one part type, it’s assumed that the coupling MMF between stator and rotor have a non-sinusoidal shapes according to the actual windings distribution over the motor slots. While in second part type the generated MMF in are assumed to have sinusoidal waveform. The suggested models may be used to simulate the dynamic as well as steady state performance of a faulty and non-faulty motor. A simulation of the suggested models that consists of m-rotor bars and n-stator phases multiple coupled circuit-based has been performed using matlab m.file and the results of the motor current have been proved in its nonlinear way by using WFA.
Improvement of protection relay with a single phase autoreclosing mechanism based on artificial neural network Zozan Saadallah Hussain; Ahmed J. Ali; Ahmed A. Allu; Rakan Khalil Antar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v11.i1.pp505-514

Abstract

This paper presents a developed logical tripping scheme to improve conventional protection performance. Adaptive single pole auto reclosure (ASPAR) system is proposed that considers, automatically tripping and reclosing of a multi-shot independent pole technique of a circuit breaker at a predetermined sequence, which can be used to boost the synchronization of the power grid under the transient fault conditions. Moreover, the ASPAR can be utilized to enhance the electrical system stability and reliability at the same operating conditions. Based on the three-phase system, the Artificial neural network (ANN) in this work has been done in order to diagnose and detect healthy and faulted phases. The proposed ANN fault classifier method consists of the logic gates, router circuits, timers, and positive and negative sequence analyses circuit. In addition, it is used to give the ability to recognize a fault type, which by training on the sequence angle values and coordination of the transmission line. Three-phase overhead transmission line including the proposed ASPAR is built in MATLA \SIMULINK environment. Thus the performance ANN-fault classified is tested under different fault conditions. Simulation results show that the proposed ASPAR based on ANN is accurate and well performance. Whereas resultant tripping and reclosing signals of ASPAR are successfully provided that enhances the circuit breaker mechanism under these operating condition.
Performance improvement of stand-alone induction generator using distribution SSC for wind power application Mahmood T. Alkhayyat; Ziad Saeed Mohammed; Ahmed J. Ali
Bulletin of Electrical Engineering and Informatics Vol 11, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i2.2730

Abstract

Self-excited induction generators (SEIGs) are used in wind turbine system because of high reliability, rigidity, simple structure, and capability to work under severe badly operating conditions. This type of generator has a poor terminal voltage and frequency regulation during changing the connected loads due to the absence of constant excitation current. Therefore, it is essential to stabilize the generated voltage and frequency besides suppress the injected harmonic current components. In this work, the dynamic performance of SEIG with distribution static series compensator (DSSC) is analyzed. The DSSC based on neuro-fuzzy controlled (NFC) is applied to control both voltage and frequency to enhance the regulation of SEIG. The NFC is used to control the DSSC which leads to balance the requirement of the reactive and active power of stand-alone grid under load variation and attempts to obtain a constant terminal voltage. The model is simulated using MATLAB/Simulink. The NFC structure designed to regulate and control the output voltage of the SEIG driven by a wind turbine to feed a consumer in remote and rural places. Furthermore, the power system parameters calculated depending on the d-q theory. Modeling results explained that the suggested controller is consistent and tough related to the conventional types.
Internet of things based real-time electric vehicle and charging stations monitoring system Emad A. Mohammed; Mahmood Hameed Qahtan; Ahmed J. Ali
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i3.pp1661-1669

Abstract

Due to a shortage of fuel sources and the increment in environmental pollution, efficient techniques should be introduced. The best solution is to move to the use of electric vehicles. The article aims to develop a solution for electric vehicle (EV) charging station locations that utilize the internet of things (IoT) technology. The IoT is a paradigm that uses sensors and transmitting networks to provide current facilities with a real-time global communication perspective of the physical world. This paper proposes a real-time system to provide a real-time update to EV location and charging stations (CSs) location to reduce time lost by users searching CSs, and provides real-time charging station (CS) recommendations for EV users by displaying the nearest CS, provide estimation arrival time to the nearest CS, display distance between nearest CS and EV real-time updated. The work of the proposed system was tested, and the most significant error rate (17 meters) is represented by the difference in the distance obtained from the system and the distance obtained from Google Map. The total accuracy of the design for the tested case is (98.014%).
Study the dynamic performance of PM machines for different rotor topologies Abdullah K. Shanshal; Ahmed J. Ali; Alya H. AL-Rifaie
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 4: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i4.pp2062-2070

Abstract

For hybrid and electric vehicle drive-train (automotive applications) achieving high torque and efficiency at a wide range of operating conditions can be considered an important matter. Therefore, precise structure optimization of the permanent magnet synchronous machines (PMSMs) is recommended. Consequently, the effect of the main leading design parameters (such as PM arrangement, magnet thickness, pole arc to pole pitch ratio, airgap length as well as the effect of shaft material) for a different number of rotor poles configuration of PMSM can achieve optimum design results in electric motors with economical cost and excellent performance. This paper submits a comparative analysis of different rotor topologies of (PMSM). Moreover, the dynamic performances of the suggested rotor geometry topologies are investigated based on investigation of finite element analysis (FEA). The analysis offers a piece of complete information about the magnetic flux distribution and magnetic flux density over the motor geometry. Gained results from the analysis are used to give a decision for the selection of a suitable PMSM design.