Rakan Khalil Antar
Northern Technical University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Improvement of protection relay with a single phase autoreclosing mechanism based on artificial neural network Zozan Saadallah Hussain; Ahmed J. Ali; Ahmed A. Allu; Rakan Khalil Antar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v11.i1.pp505-514

Abstract

This paper presents a developed logical tripping scheme to improve conventional protection performance. Adaptive single pole auto reclosure (ASPAR) system is proposed that considers, automatically tripping and reclosing of a multi-shot independent pole technique of a circuit breaker at a predetermined sequence, which can be used to boost the synchronization of the power grid under the transient fault conditions. Moreover, the ASPAR can be utilized to enhance the electrical system stability and reliability at the same operating conditions. Based on the three-phase system, the Artificial neural network (ANN) in this work has been done in order to diagnose and detect healthy and faulted phases. The proposed ANN fault classifier method consists of the logic gates, router circuits, timers, and positive and negative sequence analyses circuit. In addition, it is used to give the ability to recognize a fault type, which by training on the sequence angle values and coordination of the transmission line. Three-phase overhead transmission line including the proposed ASPAR is built in MATLA \SIMULINK environment. Thus the performance ANN-fault classified is tested under different fault conditions. Simulation results show that the proposed ASPAR based on ANN is accurate and well performance. Whereas resultant tripping and reclosing signals of ASPAR are successfully provided that enhances the circuit breaker mechanism under these operating condition.
Design of new structure of multilevel inverter based on modified absolute sinusoidal PWM technique Asef A. Saleh; Rakan Khalil Antar; Harith Ahmed Al-Badrani
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i4.pp2314-2321

Abstract

The advantage of multilevel inverters is to produce high output voltage values with distortion as minimum as possible. To reduce total harmonic distortion (THD) and get an output voltage with different step levels using less power electronics switching devices, 15-level inverter is designed in this paper. Single-phase 11-switches with zero-level (ZL) and none-zero-level (NZL) inverter based on modified absolute sinusoidal pulse width modulation (MASPWM) technique is designed, modelled and built by MATLAB/Simulink. Simulation results explained that, multilevel inverter with NZL gives distortion percent less than that with ZL voltage. The THD of the inverter output voltage and current of ZL are 4% and 1%, while with NZL is 3.6% and 0.84%, respectively. These results explain the effectiveness of the suggested power circuit and MASPWM controller to get the required voltage with low THD.
Harmonics resonance elimination technique using active static compensation circuit Rakan Khalil Antar; Mohammed Y. Suliman; Asef A. Saleh
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.3148

Abstract

The existence of nonlinear loads produces high distortion and low power factor in the power system that leads to get poor power quality. Resonance problem is occurred due to the power system inductances and the compensation capacitors which increases the harmonic distortion. Therefore, it is necessary to prevent the action of resonance even if conventional or modern methods are built to improve the power system quality. In this paper, active static compensation circuit is proposed and designed to have the features of improving power factor, reducing THD, and eliminating the harmonics resonance effect at the same time with different linear and nonlinear load conditions. These features have been performed based on a modified pulse width modulation technique to drive and control the proposed circuit. The originality designed point of this technique is to have ability to operate the active static compensation circuit as harmonics injector, power factor corrector and resonance eliminator at the same time. Simulation model results illustrate that the proposed circuit is effective for both steady-state and transient operations conditions. The THD of the supply voltage and current at firing angle (α=300) is reduced by 99% and 98.8% respectively. While the power factor is improved to stay around unity.
Power losses evaluation in low voltage distribution network: a case study of 250 kVA, 11/0.416 kV substation Emad Hussen Sadiq; Rakan Khalil Antar; Safer Taib Ahmed
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp35-41

Abstract

Nowadays, the electrical system is more complicated duet to the continuous growing. Power losses is the biggest challenges for distribution network operators. There are several causes for technical losses. Losses caused by unbalanced phase current are one of the main reasons which can be minimized by small investment through dedicating a technical line staff. As a result of connecting many single loads to three phase four wire power supplies, the current flowing in each phase will be unequal and accordingly there will be a current flowing in the neutral wire. Unbalancing currents in phases can lead to increase the conductor temperature and accordingly the conductor resistance is higher which contribute to increase the power losses. Loss reduction can lead to enormous utility saving. Besides, it increases system capacity and save more money which can be used later for future planted system. This study concentrated on the amount of copper losses in distribution networks as a result of unequal loading of the three phases four wires network. The distribution network is more efficient and more economic assuming that the right procedure is applied to balance the distribution system and achieve the required calculations which require a little investment.