R. Dewan
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Improvement of first Iteration Log Periodic Fractal Koch Antenna with Slot Implementation N. S. M. Yaziz; M. K. A. Rahim; F. Zubir; N. S. Nadzir; R. Dewan; H. A. Majid
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 4: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (983.518 KB) | DOI: 10.11591/ijece.v8i4.pp2564-2570

Abstract

In this paper, a slotted is introduced at each of the radiating elements on the 1st iteration log periodic fractal Koch antenna (LPFKA). The antenna is designed to testify the appropriate performance at UHF Digital television which operates from 4.0 GHz to 1.0 GHz. The dimension of the conventional 0th iteration LPKFA is successfully reduced by 17% with the implementation of slotted. The results show a good agreement with a stable radiation pattern across the operating bandwidth, stable gain more than 5 dBi and reflection coefficient of below -10 dB over the desired frequency range.
Entire X-band region metamaterial absorber and reflector with a microstrip patch switch for X-band applications M.M. Gajibo; M. K. A. Rahim; N. A. Murad; O. Ayop; H.A. Majid; M. Aminu-Baba; R. Dewan
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1452-1457

Abstract

A metamaterial structure capable of operating as a wide band absorber as well as an AMC reflector is presented in this report. A microstrip patch copper was used as a switch to switch between the two modes. An FR4 substrate was used and the incidental wave angles were varied from 00 to 600. Simulations results showed that the absorber was able achieve 96% absorption at 13.05 GHz and 100% absorption at 10.00 GHz and 12.00 GHz. Furthermore, it archived over 85% absorption for the entire X-band frequency range. The AMC reflector also was able to achieve 84.97%, 82.88% and 78.69% for incident angles 00, 200 and 400 respectively. Unfortunately, the structure is polarization sensitive.