Robinson Jimenez Moreno
Universidad Militar Nueva Granada

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Embedded fuzzy controller for water level control Javier Eduardo Martinez Baquero; Jairo Cuero Ortega; Robinson Jimenez Moreno
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp277-284

Abstract

This article presents the design of a fuzzy controller embedded in a microcontroller aimed at implementing a low-cost, modular process control system. The fuzzy system's construction is based on a classical proportional and derivative controller, where inputs of error and its derivate depend on the difference between the desired setpoint and the actual level; the goal is to control the water level of coupled tanks. The process is oriented to control based on the knowledge that facilitates the adjustment of the output variable without complex mathematical modeling. In different response tests of the fuzzy controller, a maximum over-impulse greater than 8% or a steady-state error greater than 2.1% was not evidenced when varying the setpoint.
Automatic food bio-hazard detection system Robinson Jimenez Moreno; Javier Eduardo Martinez Baquero
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2652-2659

Abstract

This paper presents the design of a convolutional neural network architecture oriented to the detection of food waste, to generate a low, medium, or critical-level alarm. An architecture based on four convolution layers is used, for which a database of 100 samples is prepared. The database is used with the different hyperparameters that make up the final architecture, after the training process. By means of confusion matrix analysis, a 100% performance of the network is obtained, which delivers its output to a fuzzy system that, depending on the duration of the detection time, generates the different alarm levels associated with the risk.
Neural network-based pH and coagulation adjustment system in water treatment Oscar Ivan Vargas Mora; Daiam Camilo Parrado Nieto; Jairo David Cuero Ortega; Javier Eduardo Martinez Baquero; Robinson Jimenez Moreno
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i2.pp560-567

Abstract

This document presents a machine learning model development as a tool to improve chemical dosing procedure in ariari regional aqueduct (ARA). The supervised learning model has been addressed starting from the knowledge of data color, turbidity and pH at the water inlet to the aqueduct and the dosing results of type A aluminum sulfate and calcium oxide (lime) obtained through jar tests. The construction of the automatic learning model had a comprehensive implementation and improvement field through continuous system training, which allowed an optimal dosage of Aluminum Sulfate and Lime to generate an outlet pH less than 7.5 and outlet turbidity less than 8 nephelometric turbidity unit (NTU). Those outlet water parameters meet the ministry of social protection criteria in Colombia. Also, a virtual jar test was created to reduce the time required to obtain chemical dosing values to less than a minute. In contrast, a laboratory test takes approximately a half-hour to displays results.