M. R. Awal
Universiti Malaysia Terengganu (UMT)

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

The design of IPT system for multiple kitchen appliances using class E LCCL circuit N. X. Yin; Shakir Saat; S. H. Husin; Y. Yusop; M. R. Awal
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (690.555 KB) | DOI: 10.11591/ijece.v10i4.pp3483-3491

Abstract

Since many years ago, kitchen appliances are powered up by cable connected. This create a troublesome case as wire might tangle together and cause kitchen table messy. Due to this, wireless power technology (WPT) is introduced as its ability is to transmit power to load without physical contact. This leads to cordless solution better in safety as the product can be completely seal, highly expandable power range. This work focuses on the design of WPT based on inductive approach to power up multiple kitchen appliances. The selection of inductive approach over its partners capacitive and acoustic is mainly due to high power efficiency. Class E inverter is proposed here to convert the DC to AC current to drive the inductive link. A 1 MHz operating frequency is used. To ensure the circuit is robust with load variations, an LCCL impedance matching is proposed. This solution is table to maintain the output power if there is a slight change in load impedance. Finally, the developed prototype is able to supply 50V utput which can achieve power transmission up to 81.76%.
A compact high-gain parasitic patch antenna with electronic beam-switching D. Subramaniam; M. Jusoh; T. Sabapathy; M. N. Osman; M. R. Kamarudin; R. R. Othman; M. R. Awal
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 2: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i2.pp551-555

Abstract

A high beam steering antenna using HPND PIN Diode is proposed with a capability of steering its beam into three different directions -40 º, 0º and 40 º with respective switching condition. The reconfigurable parasitic antenna consists of a driven element and two reconfigurable parasitic elements, is designed with operating range of 9.5GHz. The parasitic elements act as reflectors or director depending on the switching conditions. Both parasitic elements are connected to ground plane via shorting pins. The reconfiguration is controlled by the two HPND PIN Diode switch that embeds to the parasitic element. An average gain value of 8dBi is achieved at all reconfiguration scenarios. All the simulated design has been carried out using CST software.
Wearable antenna gain enhancement using reactive impedance substrate A.N. Suraya; T. Sabapathy; M. Jusoh; N.H. Ghazali; M.N. Osman; S. Ismail; M. R. Awal
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 2: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i2.pp708-712

Abstract

A microstrip patch antenna is designed for a wearable antenna. The performance of microstrip patch antenna loaded with reactive impedance surface (RIS) is described in terms of gain, bandwidth and return loss. The antenna is investigated in two conditions which are conventional microstrip antenna with RIS and without RIS. The designed antenna is also aimed at size reduction therefore it will be suitable for a wearable application. This antenna which is made fully using textile and it is designed for operation in the 2.45 GHz band. The performance of microstrip patch antenna loaded with RIS is described in terms of gain, bandwidth, return loss and radiation pattern. The antenna designed with RIS operates at 2.45 GHz. Bandwidth enhancement is achieved with RIS where the designed antenna can cater frequency from 2.4 GHz to 3 GHz. A gain enhancement is achieved of 20% is achieved compared with the conventional patch antenna. Although the size of the patch is reduced with the introduction of RIS, the overall size of the antenna with the substrate is almost similar to the conventional patch antenna. However, the performance of the antenna is greatly enhanced with the use of RIS.