Z. Zakaria
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 14 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 14 Documents
Search

Controlling The Radiation Pattern of Patch Antenna Using Switchable EBG M.K. Abdulhameed; M.S. Mohamad Isa; Z. Zakaria; M.K. Mohsin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 5: October 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i5.10443

Abstract

The advantages of the beam steering technique are the reduction of interference, save power and to maximize connectivity for point to multi points. Antenna gain degradation is a big problem in the beam steering technique. A new antenna structure is formed by combining the concept of mushroom-like EBG structure with the switching diode to produce the radation pattern control. All sides of the patch antenna are surrounded by several cells for EBG structure. In both of the the left and right sides, through a switching pin diode, the ground plane is attached to vias. The band-stop and band-pass properties of the EBG sector can be changed with the help of switching the diode between ON and OFF state, thus yielding the beam steering into that particular sector. At 6 GHz operational frequency, this structure has the ability to steer 40º (from -20º to +20º) while minimal diodes are utilized, directivity of 10 dBi, gain 9.86 dB and the efficiency is 96.5%. This approach is robust to gain degradation and the main lobe gain is approximately constant for all steering angles.
Review on fixed-frequency beam steering for leaky wave antenna J. S. Kasim; M. S. M. Isa; Z. Zakaria; M. I. Hussein; Mowafak K. Mohsen
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.13291

Abstract

This paper aims to survey the efforts of researchers in response to the novel and effective technology of control radiation pattern at a fixed frequency for leaky wave antenna (LWA), map the research landscape from the literature onto coherent taxonomy and determine the basic properties of this potential field. In addition, this paper investigates the motivation behind using beam steering in LWA and the open challenges that impede the utility of this antenna design. This paper offers valuable recommendations to improve beam steering in LWA. The review revealed the development and improvement of several techniques of beam scanning LWA. However, several areas or aspects require further attention. All the articles, regardless of their research focus, attempt to address the challenges that impede the full utility of beam scanning and offer recommendations to mitigate their drawbacks. This paper contributes to this area of research by providing a detailed review of the available options and problems to allow other researchers and participants to further develop beam scanning. The new directions for this research are also described.
A coupled-line balun for ultra-wideband single-balanced diode mixer M. Y. Algumaei; N. A. Shairi; Z. Zakaria; A. M. Zobilah; N. Edward
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11607

Abstract

A multi-section coupled-line balun design for an ultra-wideband diode mixer is presented in this paper. The multi-section coupled-line balun was used to interface with the diode mixer in which it can deliver a good impedance matching between the diode mixer and input/output ports. The mixer design operates with a Local Oscillator (LO) power level of 10 dBm, Radio Frequency (RF) power level of -20 dBm and Intermediate Frequency (IF) of 100 MHz with the balun characteristic of 180° phase shift over UWB frequency (3.1 to 10.6 GHz), the mixer design demonstrated a good conversion loss of -8 to -16 dB over the frequency range from 3.1 to 10.6 GHz. Therefore, the proposed multi-section coupled-line balun for application of UWB mixer showed a good isolation between the mixer’s ports.
Determination of solid material permittivity using T-ring resonator for food industry Rammah A. Alahnomi; Z. Zakaria; Zulkalnain Mohd Yussof; Tole Sutikno; Amyrul Azuan Mohd Bahar; Ammar Alhegazi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11636

Abstract

In this paper, we present a simple design of a T-ring resonator sensor for characterizing solid detection.  The sensor is based on a planar microwave ring resonator and operating at 4.2 GHz frequency with a high-quality factor and sensitivity. An optimization of the T-ring geometry and materials were made to achieve high sensitivity for microwave material characterizations. This technique can determine the properties of solid materials from range of 2 GHz to 12 GHz frequencies. Techniques of current microwave resonator are usually measuring the properties of material at frequencies with a wide range; however, their accuracy is limited. Contrary to techniques that have a narrowband which is normally measuring the properties of materials to a high-accuracy with limitation to only a single frequency. This sensor has a capability of measuring the properties of materials at frequencies of wide range to a high-accuracy. A good agreement is achieved between the simulated results of the tested materials and the values of the manufacturer’s Data sheets. An empirical equation has been developed accordingly for the simulated results of the tested materials. Various standard materials have been tested for validation and verification of the sensor sensitivity. The proposed concept enables the detection and characterization of materials and it has miniaturized the size with low cost, reusable, reliable, and ease of design fabrication with using a small size of tested sample. It is inspiring a broader of interest in developing microwave planar sensors and improving their applications in food industry, quality control and biomedical materials.