Abdeldjebar Hazzab
université TAHRI Mohamed de Bechar

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Predictive torque control of electric vehicle Mohammed El Amin Abdelkoui; Abdeldjebar Hazzab
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 5: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1081.385 KB) | DOI: 10.11591/ijece.v9i5.pp3522-3530

Abstract

The following article represents the development of a traction system of an electrical vehicle (EV) that consist of two Three-phase squirel-cage induction motors (IM) that permit the drive of the two front driving wheels. The two motors are controlled  using the Predictive Torque Control (PTC) method; A technique based on the next step prediction and evaluation of the electromagnetic torque and stator flux In a cost function in order to determinate the inverter switching vector that minimize the error between references and predicted values. PTC is what we tried to underline in this paper, so we explain below the principle of the method; and the system mathematical description is provided. An electronic differential is applied on the system to control independently the speed of the two wheels at different operating conditions in order to characterize the driving wheel system behavior, the robustness in steady state and in transient state.
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Induction Machine Control Mohamed Habbab; Abdeldjebar Hazzab; Pierre Sicard
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 5: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (531.347 KB) | DOI: 10.11591/ijece.v8i5.pp2883-2893

Abstract

In this work, a fuzzy adaptive PI-sliding mode control is proposed for Induction Motor speed control. First, an adaptive PI-sliding mode controller with a proportional plus integral equivalent control action is investigated, in which a simple adaptive algorithm is utilized for generalized soft-switching parameters. The proposed control design uses a fuzzy inference system to overcome the drawbacks of the sliding mode control in terms of high control gains and chattering to form a fuzzy sliding mode controller. The proposed controller has implemented for a 1.5kW three-Phase IM are completely carried out using a dSPACE DS1104 digital signal processor based real-time data acquisition control system, and MATLAB/Simulink environment. Digital experimental results show that the proposed controller can not only attenuate the chattering extent of the adaptive PI-sliding mode controller but can provide high-performance dynamic characteristics with regard to plant external load disturbance and reference variations. 
Reduced-order observer for real-time implementation speed sensorless control of induction using RT-LAB software Mansour Bechar; Abdeldjebar Hazzab; Mohamed Habbab; Pierre Sicard
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (534.998 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1148-1156

Abstract

In this paper, Reduced-Order Observer For Real-Time Implementation Speed Sensorless Control of Induction Using RT-LAB Softwareis presented. Speed estimation is performed through a reduced-order observer. The stability of the proposed observer is proved based on Lyapunov’s theorem. The model is initially built offline using Matlab/Simulink and implemented in real-time environment using RT-LAB package and an OP5600 digital simulator. RT-LAB configuration has two main subsystems master and console subsystems. These two subsystems were coordinated to achieve the real-time simulation. In order to verify the feasibility and effectiveness of proposed method, experimental results are presented over a wide speed range, including zero speed.