Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Geoscience, Engineering, Environment, and Technology

An Experimental Study on Effect of Palm – Shell Waste Additive to Cement Strenght Enhancement Novriansyah, Adi; Novrianti, Novrianti; U, Mursyidah; Hadiguna, Sepria Catur
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 1 (2017): JGEET Vol 02 No 01 : March (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.486 KB) | DOI: 10.24273/jgeet.2017.2.1.33

Abstract

Enhancing the cement strength through attaching chemical additive has been popular to meet the required condition for a particular well-cementing job. However, due to a low oil-price phenomenon, pouring and additive should be reconsidered because it can raise the cost and make the project become uneconomic. Another additive material in nanocomposite form will be introduced through this experimental study. The nanocomposite material consist of silica nanoparticle, known as “Nanosilica” and a palm-shell-waste, which is abundant in Indonesia. Before making a nanocomposite, the palm-shell should be burned to obtain a charcoal form, ground and sieved to attain a uniform size.   The study focuses on the two parameters, compressive strength and shear bond strength, which can reflect the strength of the cement. These values are obtained by performing a biaxial loading test to the cement sample. Various samples with different concentration of nanocomposite should be prepared and following the mixing, drying, and hardening process before the loading test is carried out. The result from the test shows a positive indication for compressive strength and shear bond strength values, according to the representative well cementing standards. Increasing the nanocomposite concentration on the cement will increase these values. Furthermore, an investigation on the temperature effect confirms that the sample with 700oC burning temperature have highest compressive-strength and shear-bond-strength values. This is a potential opportunity utilizing a waste-based material to produce another product with higher economic value.
An Experimental Study on Effect of Palm – Shell Waste Additive to Cement Strenght Enhancement Adi Novriansyah; Novrianti Novrianti; Mursyidah U; Sepria Catur Hadiguna
Journal of Geoscience, Engineering, Environment, and Technology Vol. 2 No. 1 (2017): JGEET Vol 02 No 01 : March (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.486 KB) | DOI: 10.24273/jgeet.2017.2.1.33

Abstract

Enhancing the cement strength through attaching chemical additive has been popular to meet the required condition for a particular well-cementing job. However, due to a low oil-price phenomenon, pouring and additive should be reconsidered because it can raise the cost and make the project become uneconomic. Another additive material in nanocomposite form will be introduced through this experimental study. The nanocomposite material consist of silica nanoparticle, known as “Nanosilica” and a palm-shell-waste, which is abundant in Indonesia. Before making a nanocomposite, the palm-shell should be burned to obtain a charcoal form, ground and sieved to attain a uniform size. The study focuses on the two parameters, compressive strength and shear bond strength, which can reflect the strength of the cement. These values are obtained by performing a biaxial loading test to the cement sample. Various samples with different concentration of nanocomposite should be prepared and following the mixing, drying, and hardening process before the loading test is carried out. The result from the test shows a positive indication for compressive strength and shear bond strength values, according to the representative well cementing standards. Increasing the nanocomposite concentration on the cement will increase these values. Furthermore, an investigation on the temperature effect confirms that the sample with 700oC burning temperature have highest compressive-strength and shear-bond-strength values. This is a potential opportunity utilizing a waste-based material to produce another product with higher economic value.
A Tracer Streamline Practice for Re-Evaluation Waterflood Pattern to Introduce a Cyclic Water Injection Scheme Dike Fitriansyah Putra; Lazuardhy Vozika Futur; Mursyidah Umar
Journal of Geoscience, Engineering, Environment, and Technology Vol. 6 No. 3 (2021): JGEET Vol 06 No 03 : September (2021)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2021.6.3.4064

Abstract

Waterflood introduces in the oil field a couple of years ago. Several waterflood schemes have been implemented in the fields to get the best incremental oil, such as peripheral injection, pattern waterflood, and etcetera. Many waterflood schemes are not working properly to boost the oil recovery due to unpredicted and unexpected water tide array. Then, the tracer practice started to be used for getting a better picture of the transmissibility reservoir as well as the direction of water pathway. This practice honors the parameters, such pressure, water cut, GOR, and rates. The streamline modeling is used to map the tracer, and it concludes that the selection of location of the injector should be based on the highest oil recovery achieved. Subsequently, the cyclic water injection method is one alternative. Apparently, this approach yields a quantify incremental recovery. This research utilizes the pressure different approach to figure out the route of water in the formation. The inter-well tracer technique in this modeling study is a tool to review communication between injectors and producers in the existing pattern. Many scenario should be tried to find the best options for the new pattern opportunities. In parallel, a innovative scheme of waterflood technique should be implemented too for escalating oil recovery. The stream pathway observes a new potential of the waterflood scheme. It is called "cyclic injection" scheme. The novelty of this approach is the ability to solve the poor sweep efficiency due to improper pathway of water influx in the oil bearing".