Bayu Hendradjaya
Institut Teknologi Bandung

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Coevolution of Second-order-mutant Mohamad Syafri Tuloli; Benhard Sitohang; Bayu Hendradjaya
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 5: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (394.142 KB) | DOI: 10.11591/ijece.v8i5.pp3238-3249

Abstract

One of the obstacles that hinder the usage of mutation testing is its impracticality, two main contributors of this are a large number of mutants and a large number of test cases involves in the process. Researcher usually tries to address this problem by optimizing the mutants and the test case separately. In this research, we try to tackle both of optimizing mutant and optimizing test-case simultaneously using a coevolution optimization method. The coevolution optimization method is chosen for the mutation testing problem because the method works by optimizing multiple collections (population) of a solution. This research found that coevolution is better suited for multi-problem optimization than other single population methods (i.e. Genetic Algorithm), we also propose new indicator to determine the optimal coevolution cycle. The experiment is done to the artificial case, laboratory, and also a real case.
Exploring a Better Search–based Implementation on Second–Order Mutant Generation Mohamad Syafri Tuloli; Benhard Sitohang; Bayu Hendradjaya
Jambura Journal of Informatics VOL 1, NO 1: APRIL 2019
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (545.479 KB) | DOI: 10.37905/jji.v1i1.2329

Abstract

Pengujian perangkat lunak adalah bagian dari proses pengembangan perangkat lunak, dengan tujuan utama untuk mengurangi/menghilangkan kesalahan pada perangkat lunak, hal ini umumnya dilakukan dengan menjalankan kasus-uji. Salah satu teknik untuk mengukur dan meningkatkan kualitas dari kasus uji adalah pengujian mutasi, tetapi walaupun sudah terbukti keefektifannya, teknik ini masih memiliki suatu kendala besar, yaitu tidak praktis untuk digunakan karena melibatkan pembangkitan dan eksekusi dari jumlah mutan yang besar. Belakangan ini penggunaan optimisasi berbasis-pencarian pada permasalahan pengujian perangkat lunak sedang popular. Pada penelitian ini, dilakukan eksplorasi penggunaan optimasi berbasis-pencarian pada pembangkitan mutan (variasi dari program), dengan tujuan untuk menghasilkan mutan yang tidak dapat dideteksi oleh kasus-uji, karena mutan jenis ini memiliki dapat kekurangan dari kasus-uji. Metode usulan dibandingkan dengan algoritma pembangkitan second-order mutant yang umum digunakan, dan juga dibandingkan dengan pendekatan berbasis pencarian lainnya. Hasil menunjukkan bahwa metode usulan dapat membangkitkan lebih banyak mutan tidak-terdeteksi (undetected-mutant) daripada dengan metode pembangkitan mutan yang umum. Metode usulan memiliki performansi yang lebih rendah daripada metode pembangkitan berbasis-pencarian benchmark, tetapi performansinya dapat ditingkatkan dengan melakukan perubahan pada representasi solusi, dan dengan adopsi parameter optimasi yang digunakan oleh metode pembanding. Software testing is a part of a software development process with a major concern is to reduce/eliminate fault in the software, and mainly done by executing a test case. One of the techniques for measuring and improving test case quality is mutation testing, but despite it is good effectiveness, this technique has a major problem that is impractical because it involves generation and execution of huge amount of mutant. This trend also happens in software testing, with the main focus on optimizing the test case generation. In this research, we explore the used of search-based optimization to the mutant (program variant) generation, with a goal to generate mutants that can escape test case detection, because these mutants have a probability to show test case deficiency. In this research, the proposed method is compared with a general second-order mutant generation algorithm and with other search-based mutant generation. The result shows that the proposed method can generate more undetected-mutant than a general second-order mutant generation. The proposed method performs worse than the benchmark search-based mutant generation, but this performance improved by altering it is solution representation and by the adoption of an optimization parameter.