Claim Missing Document
Check
Articles

Found 3 Documents
Search

Selection and Validation of Mathematical Models of Power Converters using Rapid Modeling and Control Prototyping Methods Fredy Edimer Hoyos; John Edwin Candelo; John Alexander Taborda
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1202.685 KB) | DOI: 10.11591/ijece.v8i3.pp1551-1568

Abstract

This paper presents a methodology based on two interrelated rapid prototyping processes in order to find the best correspondence between theoretical, simulated, and experimental results of a power converter controlled by a digital PWM. The method supplements rapid control prototyping (RCP) with effective math tools to quickly select and validate models of a controlled system. We show stability analysis of the classical and two modified buck converter models controlled by zero average dynamics (ZAD) and fixed-point induction control (FPIC). The methodology consists of obtaining the mathematical representation of power converters with the controllers and the Lyapunov Exponents (LEs). Besides, the theoretical results are compared with the simulated and experimental results by means of one- and two-parameter bifurcation diagrams. The responses of the three models are compared by changing the parameter K_s of the ZAD and the parameter N of the FPIC. The results show that the stability zones, periodic orbits, periodic bands, and chaos are obtained for the three models, finding more similarities between theoretical, simulated, and experimental tests with the third model of the buck converter with ZAD and FPIC as it considers more parameters related to the losses in different elements of the system. Additionally, the intervals of the chaos are obtained by using the LEs and validated by numerical and experimental tests
Electricity market strategies applied to microgrid development Carlos Ulises Cassiani; John Edwin Candelo Becerra; Fredy Edimer Hoyos
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.173 KB) | DOI: 10.11591/ijpeds.v11.i1.pp530-546

Abstract

Over the last decade, the liberalization of the electricity market has been sought. In order to fight the environmental impact caused by the use of fossil fuels, it is aimed to change the current system of centralized generation and achieve a more distributed one; distributed resources can use renewable or non-renewable resources as main source of energy, one way to implement these distributed systems is through micro electrical grids, since these allow improving energy efficiency. The way to efficiently implement this type of network is an important point to be solved in future research and even more if the way of conducting an electricity market for different communities is unknown. That is why this text presents the characteristics of microgrids, the management of microgrids, and the wide and promising panorama of future opportunities for a great development of this type of grid.
Evaluation of leachate turbidity reduction in sanitary landfills following a coagulation/flocculation process enhanced by vegetable starch and thermal water César Benavides; Sebastian Pacheco; Yeison Alberto Garcés Gómez; Fredy Edimer Hoyos
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16150

Abstract

This study evaluates the reduction of leachate turbidity in landfills after applying a mixture of banana starch and thermal water. Principal component analysis was applied to study the combined effect with four variables: pH, concentration of starch and thermal water mixture, rapid mixing speed and slow mixing speed. The experimental design involved 16 experiments with repetition in the jar test to obtain the optimum dose while measuring turbidity as a response variable. The results showed that after the oxidation process of organic matter, under optimal conditions determined in the experiment, the mixture of starch and thermal water contributed to the reduction of leachate turbidity by 29.1%.