John Edwin Candelo Becerra
Universidad Nacional de Colombia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Electricity market strategies applied to microgrid development Carlos Ulises Cassiani; John Edwin Candelo Becerra; Fredy Edimer Hoyos
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.173 KB) | DOI: 10.11591/ijpeds.v11.i1.pp530-546

Abstract

Over the last decade, the liberalization of the electricity market has been sought. In order to fight the environmental impact caused by the use of fossil fuels, it is aimed to change the current system of centralized generation and achieve a more distributed one; distributed resources can use renewable or non-renewable resources as main source of energy, one way to implement these distributed systems is through micro electrical grids, since these allow improving energy efficiency. The way to efficiently implement this type of network is an important point to be solved in future research and even more if the way of conducting an electricity market for different communities is unknown. That is why this text presents the characteristics of microgrids, the management of microgrids, and the wide and promising panorama of future opportunities for a great development of this type of grid.
Reactive power sharing among distributed generators in a microgrid by using virtual current Eder A. Molina-Viloria; John Edwin Candelo Becerra; Fredy Edimer Hoyos Velasco
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp99-111

Abstract

This paper presents a new autonomous effective power distribution control strategy for three-phase parallel inverters. The proposal uses a controller that can provide the system with accurate power sharing among distributed generators installed in the microgrid once some load variations are presented in the network. The methodology uses a virtual current loop introduced into the current controller of the inverter to optimize the output signal, which goes directly to the PWM. This virtual current is obtained by using a virtual impedance loop. Furthermore, a small-signal model of the system is used to check stability of the proposed control strategy, which was developed for island mode operation of the microgrid. Simulations were performed for a microgrid with two generators and a load with five households and implemented in MATLAB/Simulink software. The results show that the model provides a wide margin of stability and a rapid response when electrical loads change, thus fulfilling the reactive power sharing among generators. The proposed method shows a large margin of stability and a rapid transient response of the system.