Claim Missing Document
Check
Articles

Found 2 Documents
Search

Grid Connected Distributed Generation System with High Voltage Gain Cascaded DC-DC Converter Fed Asymmetric Multilevel Inverter Topology S. Nagaraja Rao; D. V. Ashok Kumar; Ch. Sai Babu
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (741.649 KB) | DOI: 10.11591/ijece.v8i6.pp4047-4059

Abstract

The paper presents distributed generation (DG) system in grid connected mode of operation with asymmetric multi-level inverter (AMLI) topology. Cascaded type DC-DC converter is employed to feed proposed AMLI topology. The DG output voltage (generally low voltage) is stepped up to the required level of voltage using high-gain DC-DC converter. Proposed AMLI topology consists of capacitors at the primary side. The output of high-gain DC-DC converter is fed to split voltage balance single-input multi-output (SIMO) circuit to maintain voltage balance across capacitors of AMLI topology. Cascaded DC-DC converters (both high-gain converter and SIMO circuit) are operated in closed-loop mode. The proposed AMLI feeds active power to grid converting DC type of power generated from DG to AC type to feed the grid. PWM pattern to trigger power switches of AMLI is also presented. The inverting circuit of MLI topology is controlled using simplified Id-Iq control strategy in this paper. With the proposed control theory, the active power fed to grid from DG is controlled and power factor is maintained at unity. The proposed system of DG integration to grid through cascaded DC-DC converters and AMLI structure is validated from fixed active power to grid from DG condition. The proposed system is developed and results are obtained using MATLAB/SIMULINK software.
Implementation of Cascaded based Reversing Voltage Multilevel Inverter using Multi Carrier Modulation Strategies S. Nagaraja Rao; D. V. Ashok Kumar; Ch. Sai Babu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1013.261 KB) | DOI: 10.11591/ijpeds.v9.i1.pp220-230

Abstract

In this paper, a cascaded based reversing voltage (CBRV) multilevel inverter structure is proposed inorder to compensate the major drawbacks in the conventional multilevel inverters. The proposed topology requires less number of components, less carrier signals and gate drives when compared to existing multilevel inverters particularly at higher levels. Therefore, the complexity and overall cost are greatly reduced particularly for higher output voltage levels. This paper also presents the most relevant control and modulation methods by a triangular based multi carrier pulse width modulation (PWM) scheme for the proposed CBRV inverter topology. This paper presents a comparison between different modulation strategies for CBRV inverter topology based on sinusoidal and space vector references with multi triangular carrier waves. The work strive hard to present the scrutiny that has been made between various PWM control techniques for 1–Ф seven level CBRV inverter structure. The comparison is made in terms of Total Harmonic Distortion (THD) and fundamental RMS voltage. Finally, the simulation results are included to verify the effectiveness of the proposed CBRV inverter topology and validate the proposed theory. A hardware set up was developed for a 1–Ф seven level CBRV inverter topology using FPGA based pulse generation.