Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Improved control and monitor two different PLC using LabVIEW and NI-OPC server Ignatius Deradjad Pranowo; Dian Artanto
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3003-3012

Abstract

This paper proposes an improved control and monitors between two different PLCs, the Mitsubishi, and Omron. The main advantage is interoperability and communication between both PLC. The use of NI OPC server as the software interface reached interoperability and communication. There were developed two field applications to test interoperability. Laboratory virtual instrument engineering workbench (LabVIEW) uses as the software application for creating the user interface to control and monitor. This improvement show OPC server technology solves data compatibility issue between different driver controller’s and reducing development cost. Regardless of whether there are more than two different PLCs, it's enough to use the NI OPC server. So the benefit of the NI OPC server is not limited to two types of PLC used right now but can also use the other manufacturers. Besides, the improvement of the previous study is the use of the LabVIEW makes data from the OPC server displayed more realistic. The use of LabVIEW allows additional monitoring functions, one of which is LabVIEW vision. Data utilization becomes more flexible, and so it can use for more complex purposes. It is envisaged that this is very useful for Integrator engineer to implement this method in industrial automation
Enhancing Segway scooter optimization for adaptive stability with proportional derivative control system Artanto, Dian; Pranowo, Ignatius Deradjad; Sutyasadi, Petrus
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5266-5275

Abstract

This study presents a locally manufactured Segway scooter utilizing a proportional derivative (PD) control system for adaptive stability under load variations. The system employs a lookup table correlating PD parameters with user weight categories (50–60 kg, 60–70 kg, 70–80 kg). Constructed from lightweight steel and powered by a 24 V lithium-ion battery, the prototype supports up to 85 kg while maintaining energy efficiency. Experimental results confirm the PD controller’s effectiveness in achieving stability with minimal oscillation across all tested loads. It sustains a steady- state error below 0.5° (50–60 kg) and under 1° (70–80 kg), with oscillations under 7° and recovery from 35° disturbances. Compared to complex methods like genetic algorithms or fuzzy logic, the PD system offers greater simplicity and cost-efficiency. It matches fuzzy-PID stability while reducing computational overhead by 20–40% and power consumption to 10–20 W/s, outperforming conventional PID in dynamic load adaptability. The integration of PD control with locally sourced materials underscores the solution’s sustainability and practicality, providing a scalable, energy- efficient paradigm for personal transportation with robust performance across varying conditions.