Khairayu Badron
International Islamic University Malaysia

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Study of tropospheric scintillation effects in Ku-band frequency for satellite communication system Nadirah Abdul Rahim; Hanis Nabilah A. Mulop; Khairayu Badron
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (733.467 KB) | DOI: 10.11591/ijece.v10i3.pp3136-3144

Abstract

Scintillation is a rapid fluctuation of an electromagnetic waves in terms of phase and amplitude due to a small-scale inconsistency in the transmission path (or paths) with time. Scintillation exists continuously throughout a day whether during raining or clear sky conditions. The raw signal data need to exclude other propagations factors that include signal fluctuations to further understand the scintillation studies. This paper presents the analysis of tropospheric scintillation data from January 2016 till December 2016 at Ku-band frequency of 12.202 GHz beacon signal. The experimental data from MEASAT 3B were collected and analyzed to see the effect of tropospheric scintillation. The elevation angle of the dish antenna is 77.45o. The highlighted objectives are to analyze the scintillation data at Ku-band, and to compare and validate the results with other scintillation models. The result shows that the stipulated scintillation analysis has higher amplitude, which is 0.73 dB compared to other scintillation analysis which has lower scintillation amplitude: 0.45 dB (Karasawa), 0.42 dB (ITU-R), 0.4 dB (Nadirah & Rafiqul), 0.42 dB (Van De Kamp) and 0.11 dB (Anthony & Mandeep).
Investigation of time diversity gain for earth to satellite link using rain rate gain Md. Moktarul Alam; Islam Md. Rafiqul; Khairayu Badron; Farah Dyana A. R.; Hassaan Dao; M. Rofiqul Hassan; Ali Kadhim Lwas
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1102.624 KB) | DOI: 10.11591/eei.v8i3.1512

Abstract

The utilization of satellites for communication systems has expanded considerably in recent years. C and Ku-bands of frequencies are already congested because of high demand. Future directions of satellite communications are moving towards Ka and V-bands. Earth to satellite communications are moving towards higher frequency bands in future which are more sensitive to environment. Rain causes severe degradation in performances at higher frequency bands specially in tropical regions. Several mitigation techniques are proposed to design reliable system. Time diversity is one of the potential candidate for it. However, time diversity analysis requires measured rain attenuation data. For future high frequency link design those data are not available at most of the places. This thesis proposes a method to utilize 1-minute rain rate to analyze time diversity technique at any desired frequency. This paper proposes a method to utilize 1-minute rain rate to analyse time diversity rain rate gain. In proposed method, it is assumed that rain rate gain with delay can represent rain attenuation gain with delay for same period of time at same location. The characteristics of rain rate and rain attenuation almost same because the attenuation causes due to rain.  One year measured rain rate in Malaysia is used to predict rain rate gain. The measured gain at 12.225 GHz signal is compared with that predicted by ITU-R based on rain rate measurement and is found good agreement. Hence it is recommended that the time diversity gain can be predicted using measured rain rate for any desired frequencies.
Investigation of time diversity gain for earth to satellite link using rain rate gain Md. Moktarul Alam; Islam Md. Rafiqul; Khairayu Badron; Farah Dyana A. R.; Hassaan Dao; M. Rofiqul Hassan; Ali Kadhim Lwas
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1102.624 KB) | DOI: 10.11591/eei.v8i3.1512

Abstract

The utilization of satellites for communication systems has expanded considerably in recent years. C and Ku-bands of frequencies are already congested because of high demand. Future directions of satellite communications are moving towards Ka and V-bands. Earth to satellite communications are moving towards higher frequency bands in future which are more sensitive to environment. Rain causes severe degradation in performances at higher frequency bands specially in tropical regions. Several mitigation techniques are proposed to design reliable system. Time diversity is one of the potential candidate for it. However, time diversity analysis requires measured rain attenuation data. For future high frequency link design those data are not available at most of the places. This thesis proposes a method to utilize 1-minute rain rate to analyze time diversity technique at any desired frequency. This paper proposes a method to utilize 1-minute rain rate to analyse time diversity rain rate gain. In proposed method, it is assumed that rain rate gain with delay can represent rain attenuation gain with delay for same period of time at same location. The characteristics of rain rate and rain attenuation almost same because the attenuation causes due to rain.  One year measured rain rate in Malaysia is used to predict rain rate gain. The measured gain at 12.225 GHz signal is compared with that predicted by ITU-R based on rain rate measurement and is found good agreement. Hence it is recommended that the time diversity gain can be predicted using measured rain rate for any desired frequencies.
Investigation of time diversity gain for earth to satellite link using rain rate gain Md. Moktarul Alam; Islam Md. Rafiqul; Khairayu Badron; Farah Dyana A. R.; Hassaan Dao; M. Rofiqul Hassan; Ali Kadhim Lwas
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1102.624 KB) | DOI: 10.11591/eei.v8i3.1512

Abstract

The utilization of satellites for communication systems has expanded considerably in recent years. C and Ku-bands of frequencies are already congested because of high demand. Future directions of satellite communications are moving towards Ka and V-bands. Earth to satellite communications are moving towards higher frequency bands in future which are more sensitive to environment. Rain causes severe degradation in performances at higher frequency bands specially in tropical regions. Several mitigation techniques are proposed to design reliable system. Time diversity is one of the potential candidate for it. However, time diversity analysis requires measured rain attenuation data. For future high frequency link design those data are not available at most of the places. This thesis proposes a method to utilize 1-minute rain rate to analyze time diversity technique at any desired frequency. This paper proposes a method to utilize 1-minute rain rate to analyse time diversity rain rate gain. In proposed method, it is assumed that rain rate gain with delay can represent rain attenuation gain with delay for same period of time at same location. The characteristics of rain rate and rain attenuation almost same because the attenuation causes due to rain.  One year measured rain rate in Malaysia is used to predict rain rate gain. The measured gain at 12.225 GHz signal is compared with that predicted by ITU-R based on rain rate measurement and is found good agreement. Hence it is recommended that the time diversity gain can be predicted using measured rain rate for any desired frequencies.
Estimation of satellite link’s fade margin using non-meteorological technique and worst month analysis Nur Hanis Sabrina Suhaimi; Ahmad Fadzil Ismail; Khairayu Badron; Yasser Asrul Ahmad
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4136-4144

Abstract

Satellite technology is shifting to higher frequencies such as Q or V-band to cater to greater bandwidth and higher data rates applications such as videoconferencing, internet of things (IoT) and telemedicine. The main challenge in deploying high-frequency bands in heavy precipitation areas is severe rain attenuation. In this paper, a frequency scaling technique was developed to estimate the fade margin at a higher frequency. The worst month analysis was also conducted since the analysis is also important in determining dependable fade margin. The result was evaluated and analyzed using root mean square error (RMSE) and percentage error. The proposed model offers the smallest RMSE and lowest percentage error when compared to all existing prediction models. A dependable fade margin acquired from high-accuracy rain attenuation estimation is very important. This is to apply the best mitigation technique in overcoming rain attenuation in the satellite-Earth link so that, the best system performance can be delivered.