Noor Azwan Shairi
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

A Compact Reconfigurable Dual Band-Notched Ultra-Wideband Antenna using Varactor Diodes Sam Weng Yik; Zahriladha Zakaria; Herwansyah Lago; Noor Azwan Shairi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.11552

Abstract

In this paper, a reconfigurable dual band-notched ultra-wideband (UWB) antenna is presented. The antenna design consists of a circular shape with two pairs of the L-resonator. To realize the notch characteristics in WLAN at 5.2 GHz and 5.8 GHz bands, the half wavelength of the L-resonator is introduced in the design. The T-shaped notch is etched in the ground to enhance the bandwidth which covers the UWB operating frequency range from 3.219 – 10.863 GHz. The proposed reconfigurable dual band-notched UWB antenna shows good impedance matching for the simulated in the physical layout. Furthermore, the proposed antenna has a compact size of 37.6 x 28 mm2. This proposed reconfigurable design can provide an alternative solution for the wireless system in the designing of a band-notched antenna with a good tuning capability.
Analysis and investigation of a novel microwave sensor with high Q-factor for liquid characterization Ammar Alhegazi; Zahriladha Zakaria; Noor Azwan Shairi; Tole Sutikno; Rammah A. Alahnomi; Ahmed Ismail Abu-Khadrah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 2: April 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i2.11901

Abstract

In this paper, a new design of microwave sensor with high Q-factor for liquid characterization is analyzed and investigated. The new microwave sensor is based on a gap waveguide cavity resonator (GWCR). The GWCR consists of upper plate, lower plate and array of pins on the lower plate. The liquid under test (LUT) is characterized by placing it inside the GWCR where the electric field concentrates using a quartz capillary that is passing through microfluidic channels. The results show that the proposed sensor has a high Q-factor of 4832. Moreover, the proposed sensor has the ability to characterize different types of liquids such as oils, ethanol, methanol and distilled water. The polynomial fitting method is used to extract the equation of the unknown permittivity of the LUT. The results show that the evaluated permittivity using the proposed sensor has a good agreement with the reference permittivity. Therefore, the proposed sensor is a good candidate for food and pharmaceutical applications.