I. K. Bousserhane
University Tahri Mohamed of Bechar

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Adaptive backstepping controller design based on neural network for PMSM speed control E. Sabouni; B. Merah; I. K. Bousserhane
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1940-1952

Abstract

The aim of this research is the speed tracking of the permanent magnet synchronous motor (PMSM) using an intelligent Neural-Network based adapative backstepping control. First, the model of PMSM in the Park synchronous frame is derived. Then, the PMSM speed regulation is investigated using the classical method utilizing the field oriented control theory. Thereafter, a robust nonlinear controller employing an adaptive backstepping strategy is investigated in order to achieve a good performance tracking objective under motor parameters changing and external load torque application. In the final step, a neural network estimator is integrated with the adaptive controller to estimate the motor parameters values and the load disturbance value for enhancing the effectiveness of the adaptive backstepping controller. The robsutness of the presented control algorithm is demonstrated using simulation tests. The obtained results clearly demonstrate that the presented NN-adaptive control algorithm can provide good trackingperformances for the speed trackingin the presence of motor parameter variation and load application.
dSPACE DS1104 Based Real Time Implementation of Sliding Mode Control of Induction Motor Aymen Omari; I. K. Bousserhane; A. Hazzab; B. Bouchiba
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2095.605 KB) | DOI: 10.11591/ijpeds.v9.i2.pp546-558

Abstract

In this paper, the design of a speed control scheme based on a total sliding mode control for Indirect Field Oriented of a three phase induction motor (IM) is proposed. Firstly, the indirect field oriented control is derived. Then, sliding mode control design is investigated to achieve a speed tracking objective under different load torque disturbance. Finally a dSPACE DS1104 R&D board is used to implement the proposed scheme. The experimental results released on 0.25 kW slip-ring IM show a high dynamic performance, fast transient response without overshot as well as a good load disturbances rejection response.