J. M. Lazi
Universiti Teknikal Malaysia Melaka

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Simple control scheme buck-boost DC-DC converter for stand alone PV application system M. Z. Zulkifli; M. Azri; A. Alias; Md. H. N. Talib; J. M. Lazi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (650.523 KB) | DOI: 10.11591/ijpeds.v10.i2.pp1090-1101

Abstract

In this paper a buck-boost dc-dc converter for pv application is proposed, which is mainly composed of a buck – boost converter, PV panel, load and a battery. Existing dc-dc converter can convert the power from the PV panel, but unfortunately the PV panel can only provide power when there is a high intensity of light. In order to provide power supply to the load without any interruption, buck-boost dc-dc converter is introduced. The power intermittency issue of PV panel can be overcome with the aid of a secondary supply which is in this case, the batter. The integration system between the primary and the secondary supply is controlled by a simple proposed control scheme. Battery act as a power in the low voltage side while PV panel is taking over in the high voltage side. Buck-boost converter is operated either is buck or boost mode according to the performance of the PV panel. This paper is presented the simple control scheme to decide the mode suitable for the buck and boost mode. Various conditions are simulated to verify the working operation of the buck-boost converter and to representing solar panel in real life. Simulation and experimental are carried out to verify the system.
Self-tuning Fuzzy Logic Controller Based on Takagi-Sugeno Applied to Induction Motor Drives Nabil Farah; M. H. N. Talib; Z. Ibrahim; J. M. Lazi; Maaspaliza Azri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1044.576 KB) | DOI: 10.11591/ijpeds.v9.i4.pp1967-1975

Abstract

Fuzzy logic controller has been the main focus for many researchers and industries in motor drives. The popularity of Fuzzy Logic Controller (FLC) is due to its reliability and ability to handle parameters changes during load or disturbance. Fuzzy logic design can be visualized in two categories, mamdani design or Takagi-Sugeno (TS). Mamdani type can facilitate the design process, however it require high computational burden especially with big number of rules and experimental testing. This paper, develop Self-Tuning (ST) mechanism based on Takagi-Sugeno (TS) fuzzy type. The mechanism tunes the input scaling factor of speed fuzzy control of Induction Motor (IM) drives Based on the speed error and changes of error. A comparison study is done between the standard TS and the ST-TS based on simulations approaches considering different speed operations. Speed response characteristics such as rise time, overshoot, and settling time are compared for ST-TS and TS. It was shown that ST-TS has optimum results compared to the standard TS. The significance of the proposed method is that, optimum computational burden reduction is achieved.