Renuga Verayiah
Universiti Tenaga Nasional

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Voltage regulation and power loss reduction by integration of SVC in distribution networks via PSSE Ba-swaimi Saleh; Lee Jun Yin; Renuga Verayiah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.968 KB) | DOI: 10.11591/ijpeds.v11.i3.pp1579-1587

Abstract

Voltage stability is necessary in order to maintain the health of the grid system. In recent years, the load demand is increasing from time-to-time which compromised the stability of the system. On that purpose, several methods on enhancing the voltage stability of the system was introduced such as the transformer tap and FACTS devices. In a general overview, this study is to propose a several power compensation techniques on the base case of an IEEE-33 bus whereby power flow analysis using Netwon- Raphson in PSS/E software is performed. Afterwards, distributed generation (DG) and Static VAR Compensator (SVC) will be implemented within the distribution network to compensate the voltage instability losses based on the weakest index from the bus system. From both the cases which is proposed earlier, a comparison study is conducted on the performance on both DG and SVC within the proposed network.
Battery energy storage system (BESS) design for peak demand reduction, energy arbitrage and grid ancillary services Wan Syakirah Wan Abdullah; Miszaina Osman; Mohd Zainal Abidin Ab Kadir; Renuga Verayiah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (590.038 KB) | DOI: 10.11591/ijpeds.v11.i1.pp398-408

Abstract

Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.
A Comparison Study on Types of PV for Grid Connected Photovoltaic Power Renuga Verayiah; Anusiya Iyadurai
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 2: May 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i2.pp349-356

Abstract

Grid connected photovoltaic (PV) power systems is today’s breakthrough for renewable energy source in electricity generation Grid-connected photovoltaic (PV) power systems have the advantage of more effective utilization for highest renewable source of electricity generation and tendency to continual growth in the next years. The output performance grid connected photovoltaic (PV) power systems is influenced by the impact of cell temperature or ambient temperature and solar irradiance of the solar module. This paper highlights the effect of output energy of solar module by implementing different types of solar module technology and selecting the highest energy output of the module technology for modelling and simulating the design of grid connected photovoltaic (PV) power system using Matlab/Simulink.
Comparison of Weak Load Bus Detection using LQP_LT Index with PV and QV Analysis of PSS/E Renuga Verayiah; Azah Mohamed
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 2: November 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i2.pp577-584

Abstract

Identification of weak load buses which contributes to voltage instability problem is crucial in order for an appropriate mitigation action to be executed. The current power system transmission is not only stressed to deliver high load demand at the receiving end but also facing new challenges brought by the penetratrion of renewable energy sources. This new scenario requires power system operation and analysis to be robust and fast in detecting the accurate weak load bus for correction action. Due to this, many online indices to detect weak load bus during power system contingency have been developed. Nevertheless, LQP_LT is of the latest index developed which ultimately has the reactive power tracing capability for weak load bus detection and generate priority ranking list of the weak load buses. This index was tested on IEEE 14 bus test system for different contingency scenarios. The results obtained from the LQP_LT index is compared and validated with the PV and QV analyses obtained using industrial graded PSS/E software. It was concluded that the LQP_LT index is found to be robust, efficient and need less computation time as compared to the execution of voltage stability analysis using the PSS/E Tool.