Khairul Safuan Muhammad
Universiti Teknologi MARA

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

A new gate drive for a single-phase matrix converter Rahimi Baharom; Nor Farahaida Abdul Rahman; Muhamad Nabil Hidayat; Khairul Safuan Muhammad; Mohammad Nawawi Seroji; Nor Zaihar Yahaya
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (295.492 KB) | DOI: 10.11591/ijpeds.v11.i2.pp823-826

Abstract

This paper presents the new generation of advanced gate driver circuit based on IR2110 device for a Single-Phase Matrix Converter (SPMC) circuit topology that uses MOSFETs or IGBTs switches. The new generation of gate drive circuit uses less number of components, since a single IR2110 device can drive two power switches, thus reduce power losses and minimize the complexity of conventional circuit. An additional isolation of the upper and lower sides of IR2110 device features additional protection to the proposed gate drive system. As a result, the proposed gate drive circuit just uses four IR2110 gate drives in order to control eight switches of SPMC circuit, thus, solve the conventional bulky gate drive circuit problem in SPMCs operation.  This is in line with the international power electronic technology road-maps to reduce losses, cost, volume, therefore to raise up the power density of power electronics converters. Validation have been done through the experimental test-rig. As a result, such new theoretical enhancements can be used as a novel foundation of future high power density of SPMC circuit topology and in-line with the Fourth Industrial Revolution (IR 4.0) which were characterized mainly by advances in technology
Solid-State Transformer (S2T) of Single Phase Matrix Converter Zafirah Zainuddin; Rahimi Baharom; Ihsan Mohd Yassin; Khairul Safuan Muhammad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (453.742 KB) | DOI: 10.11591/ijpeds.v9.i3.pp997-1005

Abstract

Solid-State Transformer (S2T) also known as Power Electronic Transformer (PET) is applied in various industrial fields compared to the conventional transformer due to it flexible voltage transfer ratio, high power density, and low harmonic distortion. This paper presents the S2T of Single Phase Matrix Converter (SPMC) that acts as cyclo-converter. A 1kHz frequency was synthesized on the primary side of the transformer using Pulse Width Modulation (PWM) technique, whilst, the output converted by the SPMC that produces the 50Hz frequency. A part of AC to AC operation, the switching algorithm for safe-commutation technique is also presented to solve the commutation problem caused by the usage of inductive load. Minimization of size, losses and optimal efficiency are the advantages of this approach. The proposed model was simulated by using MATLAB/Simulink (MLS).
Development of active power filter using rectifier boost technique Dygku Aniqnatasa Awg Osman; Rahimi Baharom; Dalina Johari; Muhamad Nabil Hidayat; Khairul Safuan Muhammad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v10.i3.pp1446-1453

Abstract

The development of active power filter (APF) using rectifier boost technique has been identified to compensate for the pulsating nature of the distorted supply current waveform of non-linear load. In this work, investigation is carried out on the operation of rectifier without any filters function. This is then extended to operate the rectifier converter with an active power filter function. APF function is implemented by enabling the closed-loop control using standard proportional integral control to rectify the distorted supply current to become continuous, sinusoidal and in-phase with the supply voltage waveform. Consequently, the total harmonic distortion (THD) level was reduced to meet the acceptable limit defined in the standard of IEEE-519 1992. The selected simulation results obtained from MATLAB/Simulink are presented to justify the proposed filter structure.
Comparative performance analysis of bridgeless boost and bridgeless buck converter for UPS application Khairul Safuan Muhammad; Rahimi Baharom; Siti Zaliha M. N; Wan Noraishah Wan Abdul Munim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (799.57 KB) | DOI: 10.11591/ijpeds.v11.i2.pp801-809

Abstract

In this paper, a comparative performance analysis of bridgeless boost and bridgeless buck converter for Uninterruptable Power Supply (UPS) is presented. The performance of UPS application in terms of their efficiency is compared between the conventional diode bridge converter and both bridgeless converters. The input supply power quality is also been analysed by applying open and closed loop control techniques to the converter. The results show that the efficiency and the input supply quality of the bridgeless converters are significantly improved. UPS using bridgeless boost converter has better performance in all aspect compared to bridgeless buck converter. Aligned with that, the closed loop controller for the converter has also improved the efficiency and PF more than the open loop controller in performing the UPS system. All the analytical work was performed using PSIM software.
System protection for lithium-ion batteries management system: a review L. Rimon; Khairul Safuan Muhammad; S.I. Sulaiman; AM Omar
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 3: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i3.pp1184-1190

Abstract

Robustness of a battery management system (BMS) is a crucial issue especially in critical application such as medical or military. Failure of BMS will lead to more serious safety issues such as overheating, overcharging, over discharging, cell unbalance or even fire and explosion. BMS consists of plenty sensitive electronic components and connected directly to battery cell terminal. Consequently, BMS exposed to high voltage potential across the BMS terminal if a faulty cell occurs in a pack of Li-ion battery. Thus, many protection techniques have been proposed since last three decades to protect the BMS from fault such as open cell voltage fault, faulty cell, internal short circuit etc. This paper presents a review of a BMS focuses on the protection technique proposed by previous researcher. The comparison has been carried out based on circuit topology and fault detection technique