Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Semantik

Deteksi Api dengan MultiColorFeatures, Background Subtraction dan Morphology Guruh Fajar Shidik; Fajrian Nur Adnan; Ricardus Anggi Pramunendar; Catur Supriyanto; Pulung Nurtantio Andono
Semantik Vol 3, No 1 (2013): Semantik 2013
Publisher : Semantik

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (671.742 KB)

Abstract

Pentingnya  deteksi  api secara dini dapat membantu memberikan peringatan  serta  menghindari bencana yang menyebabkan kerugian ekonomi dan kehilangan nyawa manusia.  Teknik deteksi api dengan sensor konvensional  masih  memiliki keterbatasan, yakni  memerlukan waktu yang cukup lama dalam mendeteksi api pada ruangan yang besar serta tidak dapat bekerja di ruangan terbuka. Penelitian ini mengusulkan metode deteksi  api secara visual yang dapat digunakan pada  camera surveillance dengan  menggunakankombinasi  Multicolorfeatures  sepertiRGB,  HSV,YCbCr  dan  Background Subtraction  serta morphologyuntuk pendeteksian  pergerakan  api.  Evaluasi penelitian  dilakukan dengan menghitung tingkat error deteksi  area api.
Klasifikasi Teks Pesan Spam Menggunakan Algoritma Naïve Bayes Ika Novita Dewi; Catur Supriyanto
Semantik Vol 3, No 1 (2013): Semantik 2013
Publisher : Semantik

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.438 KB)

Abstract

Intensitas pengiriman teks pesan spam melalui layanan sms semakin meningkat seiring dengan meningkatnya trafik komunikasi. Hal ini bisa meresahkan dan membuat ketidaknyamanan para penerima pesan. Salah satu cara yang bisa terapkan untuk mengatasi pesan spam adalah dengan melakukan filterisasi. Filterisasi diterapkan untuk membedakan pesan yang berisi spam dan pesan yang tidak berisi spam menggunakan teknik klasifikasi teks dengan metode naïve bayes. Naïve bayes efektif diterapkan untuk melakukan klasifikasi data dengan jumlah  yang besar. Hasil eksperimen menunjukkan bahwa Naïve Bayes dalam melakukan klasifikasi teks pesan memiliki nilai akurasi 84.40%, precision 45.76% dan recall 88.09% dengan proses dokumen menggunakan word vector TF-IDF tanpa metode prune.  Penerapan klasifikasi teks menggunakan Naïve Bayes dengan word vector TF-IDF dapat menghasilkan tingkat akurasi yang baik, sehingga dapat diterapkan untuk memfilter pesanyang berisi spam.