Kassim Rasheed Hameed
Mustansiriyah university

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis and design of photovoltaic three-phase grid-connected inverter using passivity-based control Zainab Mahmood Abed; Turki Kahawish Hassan; Kassim Rasheed Hameed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i1.pp167-177

Abstract

This paper presents photovoltaic three-phase grid-connected inverter with an inductor-capacitor-inductor (LCL)-filter. For robustness against variation of filter parameters and external disturbance, the passivity-based control (PBC) method has been adopted. In this method, there are two interactively coupled feedforward terms and three damping gains in the control loops which are designed to limit the steady state error of grid current. Boost converter with P&O maximum power point tracker (MPPT) is used for each photovoltaic (PV) string to extract maximum power and to raise the PV voltage to a value suitable for the grid-connected inverter. The outputs of all boost converters are connected in parallel and controlled to fixed reference voltage using proportional-integral (PI) controller to make the direct-current (DC) link voltage robust against variations in sun radiation intensity and system parameters change. The suggested system is analyzed, designed and simulated using PSIM program. 1 kW, 2kW, and 3kW PV systems connected to grid of 220V/50Hz are tested and the results show the validity of the suggested grid-connected PV systems and robustness against filter parameters variation.
Simulation model of proportional integral controller-PWM DC-DC power converter for DC motor using MATLAB Salam Waley Shneen; Ahlam Luaibi Shuraiji; Kassim Rasheed Hameed
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 2: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i2.pp725-734

Abstract

Smoothly speed range changing, easily speed controlling, and swiftly dynamic response for load torque changing are the main merits which are delivered by direct current (DC) motors. They are also distinguished by their versatility. All these characteristics make the DC motors suitable candidates for various applications. An accurate high-speed control with a good dynamic response, would be of demand for many applications of the DC motors. Controlling the speed of motors using conventional systems is one of the most important method that is adopted and it can be more efficient when used with electronic power devices to control the output voltage. Hence, this paper introduces an efficient proportional integral (PI) speed controller for DC motor fed by direct current-direct current (DC-DC) convertor, which is switched by pulse-width modulation technique. MATLAB/Simulink environment is used to build the whole system. Two operation scenarios have been conducted including constant load with variable speed and variable load with constant speed.
Influence of end-effect and end-winding on the electromagnetic losses and efficiency in high speed permanent magnet machines Ahlam Luaibi Shuraiji; Sabah A. Gitaffa; Kassim Rasheed Hameed; Salam Waley Shneen
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 4: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i4.pp2033-2040

Abstract

Permanent-magnet excitation machines (SPMMs) having mounted magnet on the outer surface of their rotor are preferred for high speed applications such as turbochargers, mechanical turbo-compounding systems, racing engines and fuel pumps, over other types of machines including induction and switched-reluctance machines, since the SPMMs integrate the features of high torque density, compact rotor structure, high reliability and simple structure. However, in the SPMMs, due to the need for a retaining sleeve for the rotor, a large magnetic airgap results and consequently a large magnet thickness is required, hence the magnetic end-effect is relatively high. On the other hand, the use of an overlapping distributed winding leads to a significantly large end-winding length. Hence, the end-effect and the end-winding influences on the performances of a high-speed SPMM is considered in this paper. With a view to get the impact of the end-effect, a comparison between three-dimensional (3D-FEA) results and counterparts two-dimensional finite element analyses (2D-FEA) have been conducted. Results show that, higher efficiency at low torque and low speed due to the low electromagnetic losses and at high speeds due to the high flux-weakening capability are seen when the influences of end-effect as well as end-winding are taken into account.