Ammar Al-Gizi
Mustansiriyah University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison between piezoelectric transformer and electromagnetic transformer used in electronic circuits Wedian Hadi Abd Al Ameer; Mustafa A. Fadel Al-Qaisi; Ammar Al-Gizi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14334

Abstract

This paper presents study, modeling and simulation of the piezoelectric material works as transformer (piezoelectric transformer (PT)) in power electronic circuits, comparisons are made with the regular transformer (iron core) works in the same circuit, the tested circuit is the full bridge converter which used in the simulation as dc power supply circuit. As a result, a detailed simulation for both the piezoelectric transformer and traditional transformer are achieved, as well as the output voltage from the dc power supply is tested by varying the load resistance. The dc power supply circuit has been simulated using PSIM (V9.1) power electronic circuit simulation software.
Optimization of fuzzy photovoltaic maximum power point tracking controller using chimp algorithm Ammar Al-Gizi; Abbas Hussien Miry; Mohanad A. Shehab
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4549-4558

Abstract

In this paper, a photovoltaic (PV) fuzzy maximum power point tracking (MPPT) method optimized by the chimp algorithm is presented. The fuzzy logic controller (FLC) of seven triangular membership functions (MFs) is used. The optimization fitness function is composed of transient and steady-state indices under different irradiation and temperature operating conditions. By using MATLAB package, the performance of optimized method is examined and compared with asymmetrical FLC and well-known perturb and observe (P&O) tracking methods at different operating conditions in terms of: transient rising time (tr) and energy yield during 30 s. Moreover, the tracking methods are also compared in terms of the fitness function value. From the comparison of simulation results, a more energy can be harvested by using the proposed optimized tracking method compared to the other methods. Consequently, at the various operating conditions, the proposed method can be used as a more reliable tracking method for PV systems.