Shahrin Md. Ayob
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Bridgeless PFC single ended primary inductance converter in continuous current mode Nor Akmal Rai; Mohd Junaidi Abdul Aziz; Mohd Rodhi Sahid; Shahrin Md. Ayob
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (420.037 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1427-1436

Abstract

This paper presents bridgeless single ended primary inductor (SEPIC) converter operated in continuous conduction mode (CCM). The converter used in the study offers a lesser conduction loss compared to the other bridgeless SEPIC converter.   In order to regulate the required output current and output voltage with high efficiency while achieving high power factor correction (PFC) at the input side, average current mode control (ACMC) is applied. The model is simulated using MATLAB/Simulink and it is found that the converter and the proposed control strategy provide a promising result. The preliminary results obtained from the experimental test-rig shows a good agreement as in simulation. The theoretical analysis of the proposed controller is verified on an output 100V to 300W prototype.
A community scale hybrid renewable energy system for sustainable power supply during load shedding Muhammad Paend Bakht; Mohd Norzali Haji Mohd; Shahrin Md. Ayob; Nuzhat Khan; Abba Lawan Bukar
Indonesian Journal of Electrical Engineering and Computer Science Vol 31, No 1: July 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v31.i1.pp33-43

Abstract

Load shedding is an operating condition in which the electrical grid is temporarily disconnected from the load. The objective is to minimize the gap between available generation capacity and load demand while maintaining an equitable supply for all consumers. Load shedding is a prominent problem for many developing countries. To address this issue, this paper explores the potential of a hybrid energy system (HES) to provide uninterrupted power supply at the distribution feeder despite load shedding from electrical grid. The proposed HES in this work combines photovoltaic (PV) array, battery storage system (BSS) and diesel generator (DG). The HES is equipped with energy management scheme (EMS) that ensures continuous power supply, improves energy efficiency, and minimizes the electricity cost. To accomplish these tasks, the EMS operates the system in one of three modes: grid mode, renewable energy source mode and the diesel generator mode. Besides, the proposed methodology allows injecting surplus PV energy into the grid, thus maximizing PV utilization and improving power system’s reliability. The results of this study will assist policymakers to determine the prospect of renewable based hybrid system to supply sustainable power and eliminate the energy problems in the power deficit countries.