Claim Missing Document
Check
Articles

Found 5 Documents
Search

Prediksi Kinerja Steamflood Dengan Metode Myhill-Stegemeier dan Gomaa di Area R Duri Steamflood (DSF) Rycha Melysa
Journal of Earth Energy Engineering Vol. 5 No. 2 (2016): OCTOBER
Publisher : Universitas Islam Riau (UIR) Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22549/jeee.v5i2.478

Abstract

Steamflood constitutes one of method Enhanced Oil Recovery (EOR) by injected steam with quality and particular flow rate kontinyu into reservoir. Its aim is increase oil mobility at reservoir by downs viscosity to produced passes through producer. Before does simulation exhaustively, there is it is better does to predict performance a steamflood's reservoir by analytic simple one. This studies compares two simple methods in prediction steamflood's reservoir performance by use of data historical on area R Duri Steamflood (DSF). Gomaa's method utilizes many graph have already at previous generalizing but just applies on field with given characteristic limitation. Then Myhill Stegemeier modifies equation that made by Mandl and Volek to interpose that displacement form in reservoir is frontal displacement one dimension yawns to oil. Both of that method have excess and its lack each. Compares two simple methods in predicting reservoir performance steamflood using historical data on the area "R" Steamflood Duri. Gomaa method using some charts that have been generalized before but only apply to the courts to limit certain characteristics. Myhill-Stegemeier then modify the equations created by Mandl and Volek to argue that the form of displacement in the reservoir is a one-dimensional frontal displacement steam to oil. Both methods have advantages and disadvantages of each. Both methods produce a number of different oil recovery. The cumulative oil recovery methods amounted to 1378917 Stegemeiers Myhill-STB (76% of OOIP) and Method Gomaa of the STB 999 072 (55% of OOIP). Comparison of steam-oil (FSO) obtained in Method Myhill is a comparison of cumulative, it is evident from the constant value (FSO) obtained from the first year until the 10th year. Gomaa is different from the method they are relatively oil-vapor ratio (FSO) obtained.
Analisis Potensi Daya Listrik Pada Sumur Produksi Panas Bumi Dengan Mengunakan Metode Back Pressure Pada Unit XY Rycha Melysa; Fitrianti Fitrianti
Journal of Earth Energy Engineering Vol. 6 No. 1 (2017): APRIL
Publisher : Universitas Islam Riau (UIR) Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (480.138 KB) | DOI: 10.22549/jeee.v6i1.627

Abstract

As the increasing demand of energy in indonesia, PT.Pertamina Geothermal Energy area Kamojang that is one of the companies which are engaged in geothermal power plant which contributed the need for electricity domestic with a total capacity of 235 MW with consisting of 5 units of steam power plants electricity.But to produce the electrical power needs to be done a calculation about the potential electrical power for every production wells, so it is necessary to do back pressure production test for every production wells.Back pressure production test was conducted to obtain capability of geothermal production well, it is necessary to know the output curve of well production , back pressureproductionproduction test done by closing the wells first untill wellhead pressure reach a stability and then produce well with setting wellhead pressure at different wellhead pressure until it achieve stability for each setting of the wellhead pressure.The result of back pressure production test for every production wells in unit “XY” that the maximum mass flowof XY-1, XY-2, XY-3, and XY-4 wells at 10 kg/cm² are 28,49 tons/hour, 103,72 tons/hour, 175,31 tons/hour and 68,97 tons/hour. So the maximum potential for unit “XY” is 50 MW with total mass flow is about 373,04 kg/cm².
Analisa Dan Optimasi Recovery Perolehan Cadangan Gas Dengan Melihat Parameter Design Sumur Pada Struktur Musi Barat Di Lapangan Riyadh Rycha Melysa; Idham Khalid
Journal of Earth Energy Engineering Vol. 6 No. 2 (2017): OCTOBER
Publisher : Universitas Islam Riau (UIR) Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (723.579 KB) | DOI: 10.22549/jeee.v6i2.1013

Abstract

Lapangan Riyadh merupakan lapangan yang memiliki potensi cadangan gas. Berdasarkan hasil perkiraan cadangan secara volumetric lapangan Riyadh memiliki cadangan sebesar 686.334 Bcf. Lapangan Riyadh ini memiliki 28 sumur yaitu hanya 20 sumur yang berproduksi hingga tahun 2016. Perolehan gas pada lapangan Riyadh hingga akhir tahun 2016 yaitu sebesar 505.336 Bcf. Maka perlu dilakukan perkiraan cadangan berdasarkan material balance dan melakukan optimasi recovery perolehan gas sesuai dengan design sumur di lapangan riyadh. Pada lapangan Riyadh ini dilakukan analisa forecast tekanan terhadap kumulatif produksi gas untuk mengetahui tekanan pada kumulatif produksi gas terhadap waktu. Selanjutnya dilakukan perhitungan perkiraan cadangan dengan metode plot P/z vs Gp dan dilakukan identifikasi driving mechanism. Dari hasil perkiraan cadangan dapat dihitung perkiraan recovery factor current dan recovery factor predict . tahap optimasi recovery perolehan gas dilakukan dengan prosper dan mbal software. Hasil perkiraan cadangan gas dengan material balance plot P/z vs Gp sebesar 702.895 Bcf. Analisa plot P/z vs Gp dapat diketahui bahwa reservoir pada lapangan Riyadh dipengaruhi aquifer influx sehingga dapat di indikasi dari hasil metode cole plot, driving mechanism lapangan Riyadh ini adalah strong water drive .kemudian dari hasil perhitungan cadangan plot P/z vs Gp untuk RF current sebesar 72 % dengan RF prediksi 82 % berdasarkan manual. Setelah dilakukan simulasi Mbal recovery perolehan gas pada lapangan Riyadh dapat di optimasi sampai 85 % berdasarkan parameter design sumur yaitu tubing 3 inch.
Optimizing Oil Production at the Gathering Station by Maintaining the Oil Stock Tank / Interface Level in the Wash Tank Using the ROC System Rycha Melysa
Journal of Renewable Energy and Mechanics Vol. 4 No. 01 (2021): REM
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (292.848 KB) | DOI: 10.25299/rem.2021.vol4.no01.5772

Abstract

One of the production problems that arise at the Gathering Station is an unstable production problem, this is caused by controlling the level of fluid in the wash tank that is less than the maximum for that need to be improved by changing the system from manual to automatic. To maintain the stability of production at the gathering station, special measures such as controlling fluid levels in the storage tanks need to be carried out, monitoring pressure, temperature monitoring and so on that can have a positive effect on oil production at the gathering station. Wash Tank is a tank that is useful for temporary storage of liquid fluid (liquid) that comes from the boot gas. The liquid fluid entering the wash tank consists of a mixture of crude oil and water. At the Wash tank the process of separation between crude oil and water. This washing tank is the largest tank compared to other processing tanks at the gathering station, its diameter is around 85 ft to 90 ft, and its height is around 35 ft to 40 ft. The normal level in the separation process is 36 ft, where the level 1 ft - 29 ft is the water level, while the level 29 ft - 36 ft is the oil level. The 1ft - 29 ft level is referred to as the interface level, where the water level is expected to be at level 29 and the thickness of the oil / oil stock tank 7 ft in the wash tank. Research conducted on the problem of controlling the level of fluid in the wash tank, where manual control is ineffective and inefficient, for this reason it is necessary to change from a manual to automatic process with the ROC (Remote Operation Control) system, the changes made are expected to maintain the interface and the oil stock tank in accordance with the set point that has been determined and where the amount of oil production per day at the gathering station is very influential on the oil stock tank so that the oil pumped to the shipping line has a BS&W below 1% and has a temperature of 130 ° F -150 ° F In order to obtain this value, we must maintain the interface and the oil stock tank in accordance with the specified set point and where the amount of oil production per day at the gathering station is very influential on the oil stock tank
The Evaluation and Optimization of Electrical Submersible Pump Wells That Have A High PI Using Variable Speed Drive with Frequency Above 60Hz in "X" Field "Y" Wells: EVALUATION AND OPTIMIZATION OF ELECTRICAL SUBMERSIBLE PUMP WELLS THAT HAVE A HIGH PI USING VARIABLE SPEED DRIVE WITH FREQUENCY ABOVE 60HZ IN "X" FIELD "Y" WELLS (EVALUASI DAN OPTIMISASI SUMUR ELECTRICAL SUBMERSIBLE PUMP YANG MEMILIKI PI TINGGI DENGAN MENGGUNAKAN VARIABLE SPEED DRIVE DENGAN FREKUENSI DIATAS 60HZ PADA SUMUR "X" LAPANG Rycha Melysa; Dike Fitriansyah Putra; Dedek Julianto; Dody Yulianto; Masli Irwan Rosli
Journal of Renewable Energy and Mechanics Vol. 4 No. 02 (2021): Journal of Renewable Energy and Mechanics (REM)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (774.402 KB) | DOI: 10.25299/rem.2021.vol4.no02.6910

Abstract

The condition of a well if it is produced continuously will cause reservoir pressure to fall, and the flow rate will also go down, as a result the productivity of the well will also decrease. For this reason, there is a need for energy that can help lift fluid up to the surface. In the primary method there are 2 stages of production, namely natural flow where oil is raised directly through the tubing surface, and artificial lift is the method of obtaining oil by using the aid of additional tools. In the oil industry there are various types of artificial lifts, one of which is an electric submersible pump (ESP). Electric Submersible Pump is an electric pump that is immersed into a liquid. This pump is made on the basis of a multilevel centrifugal pump where each level has an impeller and iffuser which aims to push the fluid to the surface. ESP planning is strongly influenced by the roductivity of production wells. The rate of fluid production influences the selection of pump type and size. This is because each pump has its own production rate based on the type and size of each pump used. In the course of producing oil, there will certainly be a problem that will cause a decline in production, therefore it is necessary to evaluate and redesign the ESP pump, in an effort to optimize the production potential of these wells. In this study an evaluation of the performance of the electrical submersible pump will be carried out and a pump redesigned to optimize production using AutographPC software on the well X in the field Y Kondisi suatu sumur jika diproduksikan terus-menerus akan mengakibatkan tekananreservoir turun, dan laju alir akan turun pula, akibatnya produktivitas sumur akan turunjuga. Untuk itu perlu adanya tenaga yang dapat membantu mengangkat fluida sampaikepermukaan. Dalam metode primer terdapat 2 tahapan produksi yaitu natural flowdimana minyak terangkat kepermukaan langsung melalu tubing, dan artificial liftmerupakan metode perolehan minyak dengan menggunakan bantuan alat tambahan.Dalam dunia perminyakan ada berbagai macam jenis pengangkatan buatan salahsatunya adalah electric submersible pump (ESP). Electric Submersibel Pump merupakan pompa listrik yang dibenamkan kedalam cairan.Pompa ini dibuat atas dasar pompa sentrifugal bertingkat banyak dimana setiap tingkatmempunyai impeller dan diffuser yang bertujuan untuk mendorong fluida kepermukaan.Perencanaan ESP sangat dipengaruhi oleh produktivitas sumur produksi. Laju produksifluida berpengaruh terhadap pemilihan jenis dan ukuran pompa. Hal ini dikarenakantiap-tiap pompa memiliki laju produksi sendiri berdasarkan jenis dan ukuran tiap- tiappompa yang dipakai. Dalam kegiatan memproduksikan minyak tentu suatu saat akan terjadi permasalahanyang mengakibatkan menurunnya produksi, Oleh karena itu perlu dilaksanakan evaluasidan design ulang pompa ESP, sebagai upaya untuk mengoptimalkan potensi produksisumur-sumur tersebut. Pada penelitian ini akan dilakukan evaluasi kinerja electricalsubmersible pump dan melakukan desain ulang pompa untuk optimasi produksidengan menggunakan software AutographPC pada sumur X lapangan y Kata kunci: electric submersible pump, AutographPC, laju produksi