Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fault detection and classification in wind turbine by using artificial neural network N. F. Fadzail; S. Mat Zali
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (338.074 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1687-1693

Abstract

Wind turbine is one of the present renewable energy sources that has become the most popular. The operational and maintenance cost is continuously increasing, especially for wind generator. Early fault detection is very important to optimise the operational and maintenance cost. The goal of this project is to study fault detection and classification for a wind turbine (WT) by using artificial neural network (ANN). In this project, a single phase fault was placed at 9 MW doubly-fed induction generator (DFIG) WT in MATLAB Simulink. The WT was tested under different conditions, i.e., normal condition, fault at Phase A, Phase B and Phase C. The simulation results were used as inputs in the ANN model for training. Then, a new set of data was taken under different conditions as inputs for ANN fault classifier. The target outputs of ANN fault classifier were set as ‘0’ or ‘1’, based on the fault condition. Results obtained showed that the ANN fault classifier outputs had followed the target outputs. In conclusion, the WT fault detection and classification method by using ANN were successfully developed.
Stator winding fault detection of induction generator based wind turbine using ANN N. F. Fadzail; S. Mat Zali; M. A. Khairudin; N. H. Hanafi
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 1: July 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i1.pp126-133

Abstract

This paper presents a stator winding faults detection in induction generator based wind turbines by using artificial neural network (ANN). Stator winding faults of induction generators are the most common fault found in wind turbines. This fault may lead to wind turbine failure. Therefore, fault detection in induction generator based wind turbines is vital to increase the reliability of wind turbines. In this project, the mathematical model of induction generator based wind turbine was developed in MATLAB Simulink. The value of impedance in the induction generators was changed to simulate the inter-turn short circuit and open circuit faults. The simulated responses of the induction generators were used as inputs in the ANN model for fault detection procedures. A set of data was taken under different conditions, i.e. normal condition, inter-turn short circuit and open circuit faults as inputs for the ANN model. The target outputs of the ANN model were set as ‘0’ or ‘1’, based on the fault conditions. Results obtained showed that the ANN model can detect different types of faults based on the output values of the ANN model. In conclusion, the stator winding faults detection procedure for induction generator based wind turbines by using ANN was successfully developed.