International Journal of Power Electronics and Drive Systems (IJPEDS)
Vol 10, No 3: September 2019

Fault detection and classification in wind turbine by using artificial neural network

N. F. Fadzail (Universiti Malaysia Perlis)
S. Mat Zali (Universiti Malaysia Perlis)



Article Info

Publish Date
01 Sep 2019

Abstract

Wind turbine is one of the present renewable energy sources that has become the most popular. The operational and maintenance cost is continuously increasing, especially for wind generator. Early fault detection is very important to optimise the operational and maintenance cost. The goal of this project is to study fault detection and classification for a wind turbine (WT) by using artificial neural network (ANN). In this project, a single phase fault was placed at 9 MW doubly-fed induction generator (DFIG) WT in MATLAB Simulink. The WT was tested under different conditions, i.e., normal condition, fault at Phase A, Phase B and Phase C. The simulation results were used as inputs in the ANN model for training. Then, a new set of data was taken under different conditions as inputs for ANN fault classifier. The target outputs of ANN fault classifier were set as ‘0’ or ‘1’, based on the fault condition. Results obtained showed that the ANN fault classifier outputs had followed the target outputs. In conclusion, the WT fault detection and classification method by using ANN were successfully developed.

Copyrights © 2019






Journal Info

Abbrev

IJPEDS

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. ...