Claim Missing Document
Check
Articles

Found 5 Documents
Search

Machine learning modeling of power delivery networks with varying decoupling capacitors Yeong Kang Liew; Nur Syazreen Ahmad; Azniza Abd Aziz; Patrick Goh
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i3.pp1049-1056

Abstract

This paper presents modeling of power delivery network (PDN) impedance with varying decoupling capacitor placements using machine learning techniques. The use of multilayer perceptron artificial neural networks (ANN) and gaussian process regression (GPR) techniques are explored, and the effects of the hyperparameters such as the number of hidden neurons in the ANN, and the choice of kernel functions in the GPR are investigated. The best performing networks in each case are selected and compared in terms of accuracy using test data consisting of PDN impedance responses that were never encountered during training. Results show that the GPR models were significantly more accurate than the ANN models, with an average mean absolute error of 5.23 mΩ compared to 11.33 mΩ for the ANN.
Progress in neural network based techniques for signal integrity analysis–a survey Chan Hong Goay; Azniza Abd Aziz; Nur Syazreen Ahmad; Patrick Goh
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (629.348 KB) | DOI: 10.11591/eei.v8i1.1405

Abstract

With the increase in data rates, signal integrity analysis has become more time and memory intensive. Simulation tools such as 3D electromagnetic field solvers can be accurate but slow, whereas faster models such as design equations and equivalent circuit models lack accuracy. Artificial neural networks (ANNs) have recently gained popularity in the RF and microwave circuit modeling community as a new modeling tool. This has in turn spurred progress towards applications of neural networks in signal integrity. A neural network can learn from a set of data generated during the design process. It can then be used as a fast and accurate modeling tool to replace conventional approaches. This paper reviews the recent advancement of neural networks in the area of signal integrity modeling. Key advancements are considered, particularly those that assist the ability of the neural network to cope with an increasing number of inputs and handle large amounts of data.
A FPGA threshold-based fall detection algorithm for elderly fall monitoring with verilog Pui Mun Lo; Azniza Abd Aziz
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.3152

Abstract

Fall is one of the leading causes of accidental or unintentional injury deaths worldwide due to serious injuries such as head traumas and hip fractures. As life expectancy improved, the rapid increase in aging population implied the need for the development of vital sign detector such as fall detector to help elderly in seeking for medical attention. Immediate rescue could prevent victims from the risk of suspension trauma and reduce the mortality rate among elderly population due to fall accident effectively. This paper presents the development of FPGA-based fall detection algorithm using a threshold-based analytical method. The proposed algorithm is to minimize the rate of false positive fall detection proposed from other researchers by including the non-fall events in the data analysis. Based on the performance evaluation, the proposed algorithm successfully achieved a sensitivity of 97.45% and specificity of 97.38%. The proposed algorithm was able to differentiate fall events and non-fall events effectively, except for fast lying and fall that ending with sitting position. The proposed algorithm shows a good result and the performance of the proposed algorithm can be further improved by using an additional gyroscope to detect the posture of the lower body part.
Progress in neural network based techniques for signal integrity analysis–a survey Chan Hong Goay; Azniza Abd Aziz; Nur Syazreen Ahmad; Patrick Goh
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1364.934 KB) | DOI: 10.11591/eei.v8i1.1405

Abstract

With the increase in data rates, signal integrity analysis has become more time and memory intensive. Simulation tools such as 3D electromagnetic field solvers can be accurate but slow, whereas faster models such as design equations and equivalent circuit models lack accuracy. Artificial neural networks (ANNs) have recently gained popularity in the RF and microwave circuit modeling community as a new modeling tool. This has in turn spurred progress towards applications of neural networks in signal integrity. A neural network can learn from a set of data generated during the design process. It can then be used as a fast and accurate modeling tool to replace conventional approaches. This paper reviews the recent advancement of neural networks in the area of signal integrity modeling. Key advancements are considered, particularly those that assist the ability of the neural network to cope with an increasing number of inputs and handle large amounts of data.
Progress in neural network based techniques for signal integrity analysis–a survey Chan Hong Goay; Azniza Abd Aziz; Nur Syazreen Ahmad; Patrick Goh
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1364.934 KB) | DOI: 10.11591/eei.v8i1.1405

Abstract

With the increase in data rates, signal integrity analysis has become more time and memory intensive. Simulation tools such as 3D electromagnetic field solvers can be accurate but slow, whereas faster models such as design equations and equivalent circuit models lack accuracy. Artificial neural networks (ANNs) have recently gained popularity in the RF and microwave circuit modeling community as a new modeling tool. This has in turn spurred progress towards applications of neural networks in signal integrity. A neural network can learn from a set of data generated during the design process. It can then be used as a fast and accurate modeling tool to replace conventional approaches. This paper reviews the recent advancement of neural networks in the area of signal integrity modeling. Key advancements are considered, particularly those that assist the ability of the neural network to cope with an increasing number of inputs and handle large amounts of data.