Sri Hartini
Universitas Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Estimating probability of banking crises using random forest Sri Hartini; Zuherman Rustam; Glori Stephani Saragih; María Jesús Segovia Vargas
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp407-413

Abstract

Banks have a crucial role in the financial system. When many banks suffer from the crisis, it can lead to financial instability. According to the impact of the crises, the banking crisis can be divided into two categories, namely systemic and non-systemic crisis. When systemic crises happen, it may cause even stable banks bankrupt. Hence, this paper proposed a random forest for estimating the probability of banking crises as prevention action. Random forest is well-known as a robust technique both in classification and regression, which is far from the intervention of outliers and overfitting. The experiments were then constructed using the financial crisis database, containing a sample of 79 countries in the period 1981-1999 (annual data). This dataset has 521 samples consisting of 164 crisis samples and 357 non-crisis cases. From the experiments, it was concluded that utilizing 90 percent of training data would deliver 0.98 accuracy, 0.92 sensitivity, 1.00 precision, and 0.96 F1-Score as the highest score than other percentages of training data. These results are also better than state-of-the-art methods used in the same dataset. Therefore, the proposed method is shown promising results to predict the probability of banking crises.
Comparison between fuzzy kernel k-medoids using radial basis function kernel and polynomial kernel function in hepatitis classification Glori Stephani Saragih; Sri Hartini; Zuherman Rustam
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp60-65

Abstract

This paper compares the fuzzy kernel k-medoids using radial basis function (RBF) and polynomial kernel function in hepatitis classification. These two kernel functions were chosen due to their popularity in any kernel-based machine learning method for solving the classification task. The hepatitis dataset then used to evaluate the performance of both methods that were expected to provide an accurate diagnosis in patients to obtain treatment at an early phase. The data were obtained from two hospitals in Indonesia, consisting of 89 hepatitis-B and 31 hepatitis-C samples. The data were analyzed using several cases of k-fold cross-validation, and the performances were compared according to their accuracy, sensitivity, precision, F1-Score, and running time. From the experiments, it was concluded that fuzzy kernel k-medoids using RBF kernel function is better compared to polynomial kernel function with the 6% increment of accuracy, 13% enhancement of sensitivity, and 5% improvement in F1-Score. On the other side, the precision of fuzzy kernel k-medoids using polynomial kernel function is 2% higher than using the RBF kernel function. According to the results, the use of RBF or polynomial kernel function in fuzzy kernel medoids can be considered according to the primary goal of the classification.