This Author published in this journals
All Journal MATEMATIKA
Irawanto Bambang
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

GEOMETRI PROYEKTIF PG(2, pn) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG SIMETRIS H, Yuni; Bambang, Irawanto
MATEMATIKA Vol 11, No 3 (2008): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (92.999 KB)

Abstract

A Symmetric Balanced Incomplete Block design with parameters  is Balanced Incomplete Block (BIB) design with  and . Projective geometry PG (2, pn) is the finite geometry of two dimensions over the Galois Field GF(pn). Projective geometry PG (2, pn) can be used to construct symmetric BIB design if the points of PG(2, pn) are assumed same with the object of symmetric BIB design and the lines which contain the points from PG(2, pn) same with the blocks of symmetric BIB design.  
AUTOMORFISMA GRAF WARNA CAYLEY YANG DIBANGUN OLEH SUATU GRUPOID Kristina Ningrum, Bety Dian; Bambang, Irawanto
MATEMATIKA Vol 14, No 1 (2011): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (18.169 KB)

Abstract

Groupoid  adalah suatu himpunan tak kosong yang tertutup terhadap operasi biner, himpunan generator  grupoid merupakan subset dari grupoid dimana setiap elemen grupoid dapat ditulis sebagai hasilkali berhingga pada elemen generator.Graph warna Cayley  digraph dengan titik-titiknya adalah  dan himpunan busurnya . Generator grupoid befungsi sebagai warna dan arah busur digraph.Pemetaan  adalah pemetaan bijektif antara graph     dengan dirinya sendiri.. Automorphism parsial pada graph warna Cayley  adalah pemetaan bijektif antara dua tail graph warna Cayley .  Himpunan Automorphisma Parsial graph warna  Cayley adalah    
MENENTUKAN INVERS DRAZIN DARI MATRIKS SINGULAR Khasanah, Lisnilwati; Bambang, Irawanto
MATEMATIKA Vol 14, No 3 (2011): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (62.594 KB)

Abstract

A singular matrix A with size  has a inverse be called Drazin inverse and denoted by . This inverse can be obtained by specifying a generalized Modal matrix and Jordan canonical form  of matrix A. Generalized Modal matrix  is a matrix where its columns consisting of generalized eigen vectors  from the matrix A, while the Jordan canonical form  is a matrix which entries on its main diagonal consisting of Jordan block matrix . Next, two matrices were used to determine Drazin inverse of matrix A.