Tarek Bouktir
University of Ferhat Abbas Setif 1

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

OPF for large scale power system using ant lion optimization: a case study of the Algerian electrical network Ramzi Kouadri; Ismail Musirin; Linda Slimani; Tarek Bouktir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (793.726 KB) | DOI: 10.11591/ijai.v9.i2.pp252-260

Abstract

This paper presents a study of the optimal power flow (OPF) for a large scale power system. A metaheuristic search method based on the Ant Lion Optimizer (ALO) algorithm is presented and has been confirmed in the real and larger scale Algerian 114-bus system for the OPF problem with and without static VAR compensator (SVC) devices. To get the highest impact of SVC devices in terms of improving the voltage profile, minimize the total generation cost and reduction of active power losses, the ALO algorithm was applied to determine the optimal allocation of SVC devices. The results obtained by the ALO method were compared with other methods in the literature such as DE, GA-ED-PS, QP, and MOALO, to see the efficiency of the proposed method. The proposed method has been tested on the Algerian 114-bus system with objective functions is the minimization of total generation cost (TGC) with two different vectors of variables control.
Optimal Power Flow Solution for Wind Integrated Power in presence of VSC-HVDC Using Ant Lion Optimization Ramzi Kouadri; Linda Slimani; Tarek Bouktir; Ismail Musirin
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 2: November 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i2.pp625-633

Abstract

This paper studies the impact of incorporating wind power generation WPG on the power system on prsence of voltage source converter based high voltage DC (VSC-HVDC). A new meta-heuristic optimization technique are use for solving of the optimal power flow (OPF) problem, this technique optimization namely Ant Lion Optimizer (ALO). The optimization method is the Ant Lion Optimizer (ALO) method for resolve the optimal power flow (OPF) with incorporating of wind power generation on prsence of VSC-HVDC. And we used weibull distribution model of the wind farm. The ALO-OPF method has been examined and tested on standard test systems IEEE 30 bus with objective functions is minimization of cost total of production TPC are contain the sum of thermal and wind generation cost.
Chaos Embedded Symbiotic Organisms Search Technique for Optimal FACTS Device Allocation for Voltage Profile and Security Improvement Mohamad Khairuzzaman Mohamad Zamani; Ismail Musirin; Saiful Izwan Suliman; Tarek Bouktir
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp146-153

Abstract

Due to the ever-increasing energy demand, power system operators have attempted to cope with these demands while keeping the power system remain operable. Economic constraints have forced the power system operator to abandon their effort in expanding the power system. The increased load demand can cause the power system to suffer from voltage instability and voltage collapse, especially during contingency condition. Hence, a strategy is required to maintain the steady state operation of a power system. Various research has been conducted to tackle this problem. Therefore, this paper presents the implementation of Chaos Embedded Symbiotic Organisms Search technique to solve optimal FACTS device allocation problem in power transmission system. Various practical constraints are also considered in the optimisation process to emulate the real-life constraints in power system. The optimisation process is conducted on a 26-bus IEEE RTS has validated that the results obtained has not violated the power system stability. The results provided by the proposed optimisation technique has successfully improved the voltage profile and voltage security in the system. Comparative studies are also conducted involving Particle Swarm Optimization and Evolutionary Programming technique resulting good results agreement and superiority of the proposed technique. Results obtained from this study would be beneficial to the power system operators regarding optimisation in power system operation for the implementation in real power transmission network.