Claim Missing Document
Check
Articles

Found 2 Documents
Search

Linear discriminant analysis and support vector machines for classifying breast cancer Zuherman Rustam; Yasirly Amalia; Sri Hartini; Glori Stephani Saragih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp253-256

Abstract

Breast cancer is an abnormal cell growth in the breast that keeps changed uncontrolled and it forms a tumor. The tumor can be benign or malignant. Benign could not be dangerous to health and cancerous, but malignant could be has a probability dangerous to health and be cancerous. A specialist doctor will diagnose the patient and give treatment based on the diagnosis which is benign or malignant. Machine learning offer times efficiency to determine a cancer cell. The machine will learn the pattern based on the information from the dataset. Support vector machines and linear discriminant analysis are common methods that can be used in the classification of cancer. In this study, both of linear discriminant analysis and support vector machines are compared by looking from accuracy, sensitivity, specificity, and F1-score. We will know which methods are better in classifying breast cancer dataset. The result shows that the support vector machine has better performance than the linear discriminant analysis. It can be seen from the accuracy is 98.77%.
Twin support vector machine using kernel function for colorectal cancer detection Zuherman Rustam; Fildzah Zhafarina; Jane Eva Aurelia; Yasirly Amalia
Bulletin of Electrical Engineering and Informatics Vol 10, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i6.3179

Abstract

Nowadays, machine learning technology is needed in the medical field. therefore, this research is useful for solving problems in the medical field by using machine learning. Many cases of colorectal cancer are diagnosed late. When colorectal cancer is detected, the cancer is usually well developed. Machine learning is an approach that is part of artificial intelligence and can detect colorectal cancer early. This study discusses colorectal cancer detection using twin support vector machine (SVM) method and kernel function i.e. linear kernels, polynomial kernels, RBF kernels, and gaussian kernels. By comparing the accuracy and running time, then we will know which method is better in classifying the colorectal cancer dataset that we get from Al-Islam Hospital, Bandung, Indonesia. The results showed that polynomial kernels has better accuracy and running time. It can be seen with a maximum accuracy of twin SVM using polynomial kernels 86% and 0.502 seconds running time.