Ripto Sudiyarno
Universitas AMIKOM Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison Analysis of Best First Search Algorithm with A * (star) in determining the closest route in the district Sleman Tutik Maryana; Ripto Sudiyarno; Kusrini Kusrini
CCIT Journal Vol 13 No 1 (2020): CCIT JOURNAL
Publisher : Universitas Raharja

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1522.128 KB)

Abstract

There are various pathfinding algorithms that have advantages and disadvantages of each algorithm. The purpose of this study is to compare the best-first search pathfinding greedy algorithm with A * (Star) in terms of determining the shortest route in a tent search. The method used in this study is an analytical method for analyzing what algorithms can be applied in track search. Then, the method continued with the design method for the best-first search and A * greedy algorithm, the user interface for the algorithm testing application. The next method is the implementation method, which is the best-first greedy algarithm search and A * implemented in the algorithm testing application. The last method is the method of testing algorithms that will be compared. The conclusions will be drawn from the results of comparison algorithms. The result of this study is the acquisition of a distance comparison between thegreedy best-first search algorithm with A *. The conclusion of this study is that the A * algorithm is able to provide the shortest and optimal route results compared to the BFS algorithm.
IMPLEMENTASI ALGORITMA APRIORI DAN FORWARD CHAINING UNTUK MENENTUKAN MAKANAN YANG TEPAT PADA PENDERITA DIABETES Agatha Deolika; Victor Saputra Ginting; Tutik Maryana; Ripto Sudiyarno; Kusrini Kusrini
(JurTI) Jurnal Teknologi Informasi Vol 3, No 2 (2019): DESEMBER 2019
Publisher : Universitas Asahan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (525.566 KB) | DOI: 10.36294/jurti.v3i2.1080

Abstract

Abstract - The high number of diabetes patients in Indonesia is increasing. Some of the factors that cause diabetes in Indonesia include family history, obesity, aging, lack of activity and diet. Too much food containing sugar is also one of the emergences of diabetes. Most diabetics often have complications of diabetes disease and that is based on the criteria of a patient. Therefore, it is necessary to conduct research on the rule or dependence of the disease based on patient criteria and determination of diet for diabetics. In this study using a combination of a priori methods to determine the rule of disease and forward chaining to determine patient food. Based on the research tests conducted, it can be concluded that the combination of 2 methods produces a pretty good which in the a priori method uses a minimum value of support 2 and a minimum of confidence 10 and produces 10 rules with 3 combinations of items, as well as forward chaining tests that use 30 data produces an accuracy of 83 %.Keywords - Apriori Algorithm, Forward Chaining, Diabetes Abstrak - Tingginya jumlah pasien diabetes yang  terjadi di Indonesia semakin meningkat. Beberapa faktor penyebab penyakit diabetes di Indonesia anatara lain riwayat keluarga, obesitas, pertambahan usia, kurangnya aktivitas dan pola makan. Terlalu banyak makan yang mengandung gula juga merupakan salah satu munculnya penyakit diabetes. Kebanyakan penderita diabetes sering sekali terjadinya kompliksi penyait diabetes dan itu berdasarkan kreteria seorang pasien. Maka dari itu perlu dilakukan penelitian mengenai rule atau keterhungungan penyakit berdasarkan kriteria pasien dan penentuan pola makan bagi penderita penyakit diabetes. Pada penelitian ini menggunakan kombinasi metode apriori untuk menetukan rule penyakit dan forward chainning untuk mentukan makanan pasien. Berdasarkan pada pengujian penelitian yang dilakukan dapat diambil kesimpulan Kombinasi 2 metode ini menghasilkan cukup bagus yang mana pada metode apriori menggunakan nilai minimal support 2 dan minimal confidence 10 dan menghasilkan 10 rule dengan 3 kombinasi item, serta pengujian forward chaining yang menggunakan 30 data menghasilkan akurasi 83% .Kata Kunci - Algoritma Apriori, Forward Chaining, Diabetes