p-Index From 2020 - 2025
7.903
P-Index
This Author published in this journals
All Journal TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Informatika INFOKAM Jurnal Inspiration SISFOTENIKA CogITo Smart Journal JITK (Jurnal Ilmu Pengetahuan dan Komputer) Jurnal Informatika Universitas Pamulang RESEARCH : Computer, Information System & Technology Management DoubleClick : Journal of Computer and Information Technology JurTI (JURNAL TEKNOLOGI INFORMASI) MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer JURTEKSI Jurnal Riset Informatika EKUITAS (Jurnal Ekonomi dan Keuangan) Informasi Interaktif CCIT (Creative Communication and Innovative Technology) Journal JMAI (Jurnal Multimedia & Artificial Intelligence) METIK JURNAL Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi SENSITEK Infotekmesin Jurnal Manajemen Informatika dan Sistem Informasi Journal of Information Systems and Informatics KURVATEK Indonesian Journal of Business Intelligence (IJUBI) Jurnal Tecnoscienza Indonesian Journal of Electrical Engineering and Computer Science Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Infotek : Jurnal Informatika dan Teknologi Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) Jurnal Teknologi Informatika dan Komputer International Journal of Computer and Information System (IJCIS) Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Informatika Teknologi dan Sains (Jinteks) EXPLORE Innovative: Journal Of Social Science Research Nusantara Journal of Computers and its Applications Jurnal INFOTEL Explore
Claim Missing Document
Check
Articles

Comparison Analysis of Best First Search Algorithm with A * (star) in determining the closest route in the district Sleman Tutik Maryana; Ripto Sudiyarno; Kusrini Kusrini
CCIT Journal Vol 13 No 1 (2020): CCIT JOURNAL
Publisher : Universitas Raharja

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1522.128 KB)

Abstract

There are various pathfinding algorithms that have advantages and disadvantages of each algorithm. The purpose of this study is to compare the best-first search pathfinding greedy algorithm with A * (Star) in terms of determining the shortest route in a tent search. The method used in this study is an analytical method for analyzing what algorithms can be applied in track search. Then, the method continued with the design method for the best-first search and A * greedy algorithm, the user interface for the algorithm testing application. The next method is the implementation method, which is the best-first greedy algarithm search and A * implemented in the algorithm testing application. The last method is the method of testing algorithms that will be compared. The conclusions will be drawn from the results of comparison algorithms. The result of this study is the acquisition of a distance comparison between thegreedy best-first search algorithm with A *. The conclusion of this study is that the A * algorithm is able to provide the shortest and optimal route results compared to the BFS algorithm.
Analisys Of Demand and Optimization Of Medicine Prediction Using ABC Analysis and SVR Method In The “MORBIS” Aplication Tutik Maryana; Kusrini Kusrini; Hanif Al Fatta
CCIT (Creative Communication and Innovative Technology) Journal Vol 13 No 2 (2020): CCIT JOURNAL
Publisher : Universitas Raharja

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.078 KB) | DOI: 10.33050/ccit.v13i2.1098

Abstract

The problem that occurs in hospitals regarding the processing of drug supplies is about the condition of out of stock medicines because hospitals spend around 33% of the total investment in one year only for the investment costs of drugs. To deal with the above problems the hospital must have good logistics management, one way of managing it is by doing good planning. In this research, the writer will use ABC Analysis and Support Vector Regression (SVR) algorithm. For the use of these methods, the following ABC Analysis will be used for the drug classification process, namely by dividing the torch into three main groups based on interests, namely groups A, B and C. Henceforth, the writer will use the SVR motedo to calculate drug predictions. The results that the authors get from this study are ABC analyys classify drugs. Into three groups namely group A with a total of 276 items with a percentage of 22.96% of the total number of items, group B with a total of 396 items with a percentage of 33.11% and C with a total of 528 with a percentage of 43.94% with a total of 1202 drug items. Prediction testing is done by taking a sample of five drugs derived from group classification. The SVR calculation process is done by comparing linear scaling and z normalization preprocessing methods. The result of this research is that MAPE shows that preprocessing with linear scaling produces a better value than compared to z nomrlization and calculation with ABC analysis.
Decision Support System Design Structural Promotion Civil Apparatus Using AHP and TOPSIS Methods Muhamad Yusuf; Kusrini Kusrini; Agung Budi Prasetio
CCIT (Creative Communication and Innovative Technology) Journal Vol 14 No 2 (2021): CCIT JOURNAL
Publisher : Universitas Raharja

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (989.078 KB) | DOI: 10.33050/ccit.v14i2.1396

Abstract

The quality of the performance of the State Civil Apparatus (ASN) is a very important resource to be able to determine the capacity of the Regional Apparatus Organization (OPD). One of the efforts to improve the quality of OPD performance is the promotion of positions. Promotion of an award given for work performance and dedication of a civil servant, as well as being excited to improve work performance and loyalty. Therefore, it is necessary to determine a promotion. The weighting method in this study uses the Analytical Hirarchy Process. This study also compares this method with the Technique for Ordering Preference based on Similarities with Ideal Solutions. The resulting criteria are formal and informal. Consists of formal sub-criteria consisting of formal education, position experience, class rank, technical competence, managerial competence and socio-cultural competence. Then for the informal sub-criteria consisting of discipline, innovation, creativity, ideas for institutional functions, the ability to collaborate and work in teams, loyalty, responsibility, leadership, ability to communicate well and recommendations at the provincial and / or ministerial level. Furthermore, calculations are carried out using the AHP and TOPSIS methods for data for 2018 which means 1 position, in 2019 means 2 positions, and in 2020 means 4 positions. In one position consists of 3 ASN alternatives. After comparing the accuracy level of the AHP and TOPSIS methods with experts, the results of the AHP method are better in making recommendations for structural promotion of echelon IV ASN by producing a perfect score of 100% and a TOPSIS value of 71.4%.
Optimasi Query Pada Human Resource Information System (HRIS) di Universitas XYZ Hery Siswanto; Tri Andi; Kusrini Kusrini
JMAI (Jurnal Multimedia & Artificial Intelligence) Vol. 2 No. 1 (2018): Jurnal Multimedia & Artificial Intelligence
Publisher : LPPM Universitas Mercu Buana Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (305.034 KB) | DOI: 10.26486/jmai.v2i1.53

Abstract

Optimasi merupakan suatu langkah untuk mengoptimalkan waktu menjadi lebih efisien. Ketika sebuah query diberikan pada sistem database, optimasi penting dilakukan untuk memilih strategi yang efisien untuk mengevaluasi ekspresi relasi yang ditentukan. Query optimization adalah suatu proses untuk menganalisis query, menentukan sumber-sumber apa saja yang digunakan oleh query tersebut dan apakah penggunaan dari sumber tersebut dapat dikurangi tanpa merubah output. Kegiatan Pengelolaan manajemen sumber daya manusia yang baik sangat tergantung pada kualitas informasi untuk pengambilan keputusan dibidang sumber daya manusia. Kemampuan organisasi dalam memperoleh, menyimpan, memelihara dan menggunakan informasi sumber daya manusia merupakan faktor penting yang menunjang keberlangsungan hidup perusahaan. Perusahaan harus menyadari pentingnya pemenuhan kebutuhan sumber daya manusia secara berkualitas dan tepat sehingga perlu untuk dikembangkan sistem informasi sumber daya manusia untuk menunjang pemenuhan sumber daya manusia yang berkualitas, Sistem ini yang namanya biasa disebut SISDM atau HRIS (Human Resources Information System). Hasil yang diperoleh dari pengujian sebelum optimasi dan sesudah dioptimasi menunjukan bahwa query yang sudah di optimasi waktu yang di butuhkan dalam melakukan pencarian data lebih cepat. Hasil percobaan pertama dengan 1000 data waktu yang dibutuhkan sebelum optimasi 0.023 dan sesudah di optimasi waktu yang didapatkan 0.015.
Sentiments analysis of customer satisfaction in public services using K-nearest neighbors algorithm and natural language processing approach Elik Hari Muktafin; Pramono Pramono; Kusrini Kusrini
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 1: February 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i1.17417

Abstract

Customer satisfaction is very important for public service providers, customer satisfaction can be delivered with a survey application or writing criticism that can be used to evaluate and improve service. Unfortunately, there are only a few customers who are willing to give an assessment. The survey application cannot represent the overall feeling of the customer, so it is necessary to analyze the content of the conversation between the customer and the service personnel to determine the level of customer satisfaction. In small amounts, it can be done manually, but in large quantities it is more effective to use the system. A solution is needed in the form of a system that converts voice conversations into text and analyzes customer satisfaction to obtain information for evaluation and improvement of services. This research uses K-nearest neighbors (KNN) and term frequency-inverse document frequency (TF-IDF) algorithm with natural language processing (NLP) approach to classify conversations into 2 classes, "satisfied" and " dissatisfied ". The results of this study received 74.00% accuracy, 76.00% precision and 73.08% recall. In conversations with the label "satisfied" shows customers satisfied with the service and fulfillment of customer desires, while in conversations with the label "not satisfied" customers are less satisfied with the waiting time.
SISTEM PAKAR DIAGNOSA PENYAKIT KOLESTEROL DAN ASAM URAT MENGGUNAKAN METODE CERTAINTY FACTOR Patmawati Hasan; Eka Wahyu Sholeha; Yulius Nahak tetik; Kusrini Kusrini
SISFOTENIKA Vol 9, No 1 (2019): SISFOTENIKA
Publisher : STMIK PONTIANAK

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (744.978 KB) | DOI: 10.30700/jst.v9i1.448

Abstract

Saat ini Kolestrol dan Asam urat merupakan pernyakit yang tingkat kejadianya cukup tinggi. Berdasarkan ahli dari Clinical Research Support Unit (CRSU) Fakultas Kedokteran Universitas Indonesia, Dr. Nafrialdi, PhD menyatakan bahwa 35% penduduk Indonesia memiliki kadar kolesterol lebih tinggi dari batas normal dan Menurut data WHO 2015, penderita asam urat di Indonesia terjadi pada usia dibawah 34 tahun sebesar 32% dan di atas 34 tahun sebesar 68%. Namun ketidaktahuan masyrakat umum terhadap penyakit yang dialami di karenakan mahalnya biaya yang harus di keluarkan untuk mengetahui penyakit lebih dini tanpa harus berkonsultasi ke dokter. Untuk membantu mengatasi permasalahan tersebut penulis membuat program sistem pakar yang dapat mengidentifikasi penyakit kolestrol dan asam urat masyarakat umum. Namun kemampuan sistem dalam mendiagnosa suatu gejala tidak 100% sama dengan diagnosa seorang dokter, masih banyak hal yang tidak pasti atau sehingga dapat menyebabkan kemungkinan kesalahan dalam diagnosa maka salah satu metode dalam perhitungan ketidakpastian adalah metode  certainty factor (CF). Metode Certainty Factor menyatakan kepercayaan dalam sebuah kejadian (fakta atau hipotesis) berdasarkan bukti atau penilaian pakar. Berdasarkan pengujian rekapitulasi sampel data dari 20 orang korespoden didapatkan 50% berpotensi Kolestrol, 35% berpotensi Asam Urat, dan 15% Bukan kedua penyakit. Rekapitulasi Validasi Sistem melalui pakar memberikan keakuratan 80% terhadap sistem pakar tersebut.
Sistem Pendukung Keputusan Pemilihan Suplier Hasil Tani Gabah Menggunakan Metode AHP Patmawati Hasan; Akrilvalerat Deainert Wierfi; Friden Elefri Neno; Kusrini Kusrini
SISFOTENIKA Vol 9, No 2 (2019): SISFOTENIKA
Publisher : STMIK PONTIANAK

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (588.974 KB) | DOI: 10.30700/jst.v9i2.513

Abstract

Gabah merupakan bahan pokok dalam produksi beras di PB Hikmat Tiga Berlian. Untuk menghasilkan beras dengan kualitas yang baik maka dibutuhkan pula supplier yang terbaik dan berkualitas. Salah satu upaya untuk mendapatkan supplier tersebut adalah dengan melakukan pemilihan supplier hasil tani. Namun kendala yang terjadi saat ini adalah pengambilan keputusan pada pemilihan Supplier hasil tani gabah pada saat musim panen dengan kelebihannya masing-masing. Hal ini dikarenakan petani yang membawa hasil tani hari ini dan esok hari adalah petani-petani yang berbeda. Penelitian ini bertujuan untuk merncang sistem pendukung keputusan pemilihan suplier hasil tani gabah menggunakan metode AHP. Prototype Sistem dibangun menggunkan Bahasa pemrograman PHP dan database MySQL. Sistem ini akan meghasilkan nama-nama Supllier yang terpilih untuk menyuplai gabah di PB Hikmat Tiga Berlian. Kriteria yang digunakan adalah kadar air, kadar hampa, harga, jarak lahan ke pabrik, dan transportasi. Penelitian ini menyimpulkan bahwa perancangan prototype SPK telah dapat dilakukan berdasarkan hasil pengujian User Acceptance Test dengan menggunakan 10 Respondent dan 5 pertanyaan bahwa sistem dengan menggunakan metode AHP Dalam pemilihan Supplier dapat diterapkan. Hal ini didasarkan pada nilai rata-rata hasil 68 % responden menjawab Sangat Setuju dan 26 % responden menjawab Setuju. Pengujian terhadap hasil output sistem dan hasil perhitungan manual tidak ditemukan perbedaan hasil.
Cluster Evaluation Weighing Intercomparison Data with Self Organizing Maps Algorithm Arif Fajar Solikin; Kusrini Kusrini; Ferry Wahyu Wibowo
SISFOTENIKA Vol 11, No 2 (2021): SISFOTENIKA
Publisher : STMIK PONTIANAK

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30700/jst.v11i2.1153

Abstract

Laboratory intercomparison is one of method to determine the ability and assess the performance of a laboratory. Laboratory performance can be seen from the evaluation of the En ratio’s value, which is a comparison between the difference in the value test of the participant's laboratory with reference’s laboratory and the difference in the square root of the uncertainty value form participant's laboratory and reference’s laboratory. The laboratory is declared equivalent if the En value is in the range of En ≤|1|. Intercomparisons evaluation can also be done by utilizing one of the data mining technologies in the form of clustering. Clustering is done by using self-organizing maps algorithm, which is an unsupervised learning algorithm. The advantage of clustering in evaluating intercomparation data lies in its ability to group data into several clusters that have closeness or similarity in characteristics / traits / characters of data, making it easier for intercomparation organizers to provide analytical recommendations for improving laboratory performance. Intercomparation data are grouped based on the homogeneity between members in one cluster and heterogeneity among the clusters. To get the best number of clusters, evaluation is carried out through three testing methods, pseudo-F statistic, icdrate and davies bouldin index. From several experiments, the largest pseudo-F statistic value was 167.53, the smallest icdrate value was 0.071 and the smallest DBI value was 0.053 for the 1000 g artifact. As for the 200 g artifact, the largest pseudo-F statistic value was 104.86, the smallest icdrate value was 0.289 and the smallest DBI value was 0.306
Estimation System For Late Payment Of School Tuition Fees Muqorobin Muqorobin; Kusrini Kusrini; Siti Rokhmah; Isnawati Muslihah
International Journal of Computer and Information System (IJCIS) Vol 1, No 1 (2020): IJCIS : Vol 1 - Issue 1 - 2020
Publisher : Institut Teknologi Bisnis AAS Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29040/ijcis.v1i1.5

Abstract

The Surakarta Al-Islam Vocational School is a private educational institution that requires all students to pay school tuition fees. Education is an obligation for all Indonesian citizens. The cost of education is one of the most important input components in implementing education. Because cost is the main requirement in achieving educational goals. SPP School is a routine school fee that is carried out every month. Based on last year's School Admin report, many students were late in paying school tuition fees, around 60%. This is a very big problem because the income of school funds comes from school tuition. The purpose of this research is that the researcher will build a prediction system using the best classification method, which is to compare the accuracy level of the Naïve Bayes method with the K-K-Nearest Neighbor method. Because both methods can make class classifications right or late, in paying school fees. processing using dapodic data for 2017/2018 as many as 236 data. In improving accuracy, the researcher also applies feature selection with Information Gain, which is useful for selecting optimal parameters. System testing is carried out using the Confusion Matrix method. The final results of this study indicate that the Naïve Bayes Method + Information Gain Method produces the highest accuracy, namely 95% compared to the Naïve Bayes method alone, namely 85% and the K-NN method, namely 81%.
Evaluasi Usability Pada Aplikasi Simpatika Direktorat Jenderal Pendidikan Islam Kementerian Agama Umdatur Rosyidah; Kusrini Kusrini; Henderi Henderi
Proceeding Seminar Nasional Sistem Informasi dan Teknologi Informasi 2018: Proceeding Seminar Nasional Sistem Informasi dan Teknologi Informasi (SENSITEK)
Publisher : STMIK Pontianak

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30700/pss.v1i1.338

Abstract

Usability untuk mengukur kemudahan suatu antarmuka menjadi salah satu aspek penentu keberhasilan suatu sistem infomasi. Banyaknya sistem informasi milik pemerintah yang gagal dan ditinggalkan penggunanya menjadi latar belakang peneliti melakukan penelitian ini. Peneletian ini bertujuan untuk mengetahui tentang seberapa mudah aplikasi SIMPATIKA bisa digunakan oleh pengguna dengan menggunakan model Usability Nielsen yang terdiri dari lima variabel yaitu learnability, efficiency, memorability, errors dan satisfaction. SIMPATIKA adalah aplikasi pengelola tunjangan profesi guru milik Kementerian Agama. Penelitian ini dilaksanakan dengan menyebar kuisioner dan wawancara kepada pengguna di Kecamatan Babadan Kabupaten Ponorogo serta Focus Group Discussion untuk dapat mengambil kesimpulan dan rekomendasi. Hasilnya diperoleh bahwa usability pada aplikasi SIMPATIKA memiliki persentase sebesar 71,54% yang berarti pengguna mudah menggunakan aplikasi SIMPATIKA dan variabel efficiency paling signifikan berhubungan dengan SIMPATIKA. Namun berdasarkan hasil kuisoner ada beberapa variabel yang memiliki persentase dibawah 70,00%. Penambahan fitur pendeteksi kesalahan, fitur pengganti tanda tangan, tambahan kotak dialog petunjuk navigasi, kotak dialog pemberitahuan update dan disable menu yang belum saatnya diakses menjadi rekomendasi berdasarkan hasil Focus Group Discussion guna meningkatkan usability pada SIMPATIKA.Kata kunci: usability, evaluasi, nielsen, simpatika
Co-Authors Abdi Firdaus Achmad Wazirul Hidayat Adadilaga Arya Priwanegara Adhien Kenya Estetikha Aditya Hastami Ruger Aflahah Apriliyani Agatha Deolika Agianto Syam Halim Agung Budi Prasetyo Agus Susilo Nugroho Ajie Kusuma Wardhana Akrilvalerat Deainert Wierfi Alfahmi Muhammad Arif Alva Hendi Muhammad Amir Bagja Andi Bahtiar Semma Andi Sunyoto Andi Suyoto Andris Faesal Anggit Dwi Hartanto Anjar Anjani Putra Anwar Sadad Aolia Ikhwanudin Arham Rahim Arief Setyanto Arif Fajar Solikin Arik Sofan Tohir Arnila Sandi Asro Nasiri Asro Nasrini Ayu Adelina Suyono Aziz Muslim Candra Adipradana Devina Ninosari Dimaz Arno Prasetio Dina Maulina Donny Yulianto Dwi Astuti Dwi Utami Dwinda Etika Profesi Eka Wahyu Sholeha Eko Pramono Elik Hari Muktafin Emha Taufiq Luthfi Emha Taufiq Luthfii Erwin Apriliyanto Fandli Supandi Fendy Prasetyo Nugroho Ferry Wahyu Wibowo Fiyas Mahananing Puri Guido Adolfus Suni Hadryan Eddy Hafidz Sanjaya, Hafidz Hanafi Hanafi Hanif Al Fatta Hasirun Hasirun Henderi . Hendrik Hendrik Heri Abijono Heri Sismoro Hery Nurmawan Hery Siswanto I Made Artha Agastya Ichsan Wasiso Idris Idris Imam Listiono Irma Darmayanti Irwan Oyong José Ramón Martínez Salio Juwari Juwari Kaharuddin Kanafi Kanafi Khoirun Nisa Khomsatun Khomsatun Kumara Ari Yuana Kusnawi Kusnawi Kusuma Chandra Kirana M rudyanto Arief M. Idris Purwanto M. Nurul Wathani M. Rudiyanto Arief M. Rudyanto Arief M. Zainal Arifin Mahmudi Mahmudi Mansur Mansur Marwan Noor Fauzy Maykel Sonobe Mei P Kurniawan Mei P. Kurniawan MEI PARWANTO KURNIAWAN Moh. Badri Tamam Muahidin, Zumratul Muh Saerozi Muhamad Fatahillah Z Muhamad Yusuf Muhammad Fajrian Noor Muhammad Mariko Muhammad Riandi Widiyantoro Muhammad Riza Eko S Muhammad Rudyanto Arief Mukti Ali Mulia Sulistiyono Muqorobin Muqorobin Muslihah, Isnawati Musthofa Galih Pradana Nanang Prasetiyantara Neno, Friden Elefri Nibras Faiq Muhammad Noor Abdul Haris Noviyanti P. Nur Hamid Sutanto Paradise, Paradise Patmawati Hasan Pawit Srentiyono Prabowo Budi Utomo Pramono Pramono Prasetio, Agung Budi Prasetyo, Adi Prastowo, Wahit Desta Reflan Nuari Retzi Yosia Lewu Ridlan Ahmad Rifan Ferryawan Ripto Sudiyarno Rita Wati Riyan Abdul Aziz Rizki Mawan Robi Wariyanto Abdullah Rona Guines Purnasiwi Rudyanto Arief Saikin Sigit Pambudi Simone Martin Marotta Siti Fatonah Siti Hartinah Siti Rahayu Siti Rokhmah Slamet Slamet Sri Handayani Sri Wulandari Sry Faslia Hamka Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudiana Sudiana Sugi Harsono Supriantara Supriantara Supriatin Supriatin Supriyati Supriyati Syaiful Ramadhan Teguh Sri Pamungkas Tito Prabowo Tri Andi Tri Anggoro Tri Haryanti Tutik Maryana Tutut Dwi Prihatin Umdatur Rosyidah Vera Wati Victor Saputra Ginting Wahyu Adie Saputro Walidy Rahman Hakim Widdi Djatmiko Winarnie Yovita Kinanti Kumarahadi Yudha Chirstianto F Yuliana Yulita Fatma Andriani Yulius Nahak tetik Yuni Ambar S Yusuf Fadlila Rachman Zul Hisyam Zulkipli Zulkipli