C. L. G. Pavan Kumar
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Clarification of the optimum silica nanofiller amount for electrical treeing resistance Z. Nawawi; M. A. B. Sidik; M. I. Jambak; C. L. G. Pavan Kumar; Aulia Aulia; M. H. Ahmad; A. A. Abd Jamil
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.10605

Abstract

This paper aims to clarify the optimum amount of fumed silica (SiO2) nanofiller in resisting the initiation and propagation of electrical treeing in silicone rubber (SiR). Unlike other works, SiR/SiO2 nanocomposites containing seven different weight percentages of SiO2 nanofiller were prepared for this purpose. To achieve the objective, the electrical tree characteristics of the SiR/SiO2 nanocomposites were investigated by comparing the tree initiation voltage, tree breakdown time, tree propagation length and tree growth rate with its equivalent unfilled SiR. Moreover, the structural and morphological analyses were conducted on the SiR/SiO2 nanocomposite samples. The results showed that the SiR, when added with an appropriate amount of SiO2 nanofiller, could result in an improved electrical tree resistance. It implies that the 5 wt% of silica is the optimum amount to achieve the optimal electrical tree resistance such that above 5 wt%, the tree resistance performance has been abruptly reduced, subjected to the agglomeration issue.
Fractal analysis of electrical tree grown in silicone rubber nanocomposites Z. Nawawi; M. A. B. Sidik; M. I. Jambak; R. F. Kurnia; C. L. G. Pavan Kumar; M. H. Ahmad; Z. Buntat
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.13389

Abstract

Electrical treeing is one of the main reasons for long-term degradation of high voltage insulation especially in the cable accessory which commonly made from silicone rubber due to non-uniformly structures of the cable accessories. Recently, the combination of nanofillers with the silicone rubber matrix can reduce the possibility of the electrical treeing to grow further by changing its patterns and slow-down its propagation. However, the influences of nanofillers on the tree hindrance and its patterns are not well understood. This paper explores the influence of nanofiller on tree pattern in silicon rubber. The electrical tree patterns were characterized using fractal analysis. The box-counting method was used to measure the fractal dimension and lacunarity to obtain the structure of the tree pattern during the electrical tree growth. The structure of the electrical tree in silicone rubber nanocomposites has higher fractal dimension and lacunarity. Sample with nanofiller possesses dominant fractal dimension of tree growth compared to the sample without nanofiller.