Kamel Saleh
An-Najah National Univeristy

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

A photovoltaic integrated unified power quality conditioner with a 27-level inverter Kamel Saleh; Nael Hantouli
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.13224

Abstract

Abstract This paper presents a Unified Power Quality Conditioner (UPQC) with a 27- level inverter based on an asymmetric H-bridge topology. Each phase of the inverter is composed of three H-bridges, supplied by three DC sources scaled in the power of three. The output of the multilevel inverter is connected directly to the point of common coupling (PCC) without the need to a transformer or a filter. The calculation of the Shunt Active Power filter (SAPF) compensation current is based on the generalized theory of synchronous frame (d-q theory) while the calculation of a series active filter voltage is based on Instantaneous Reactive Power (p-q theory). The control of the SAPF is achieved by using a closed loop vector control followed by a new multilevel modulation technique. In addition to the capability of harmonic elimination of both current and voltage drawn from the source, the UPQC can produce real and reactive power to feed the loads during prolonged voltage outages or source shortage.  The injection of real and reactive power depends on the state of charge (SOC) of batteries, the frequency of the system, real and reactive power of the load, and power factor at the point of PCC. The proposed UPQC strategy is simulated in MATLAB SIMULINK and the results has shown a significant improved in Total Harmonics Distortion (THD) of both the voltage and currents.  
Sensorless Control of a Fault-Tolerant Multi-Level PMSM Drive Kamel Saleh; Mark Sumner
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.9647

Abstract

This paper presents a new technique to track the saliency position in a permanent magnet synchronous motor (PMSM) post a single phase open-circuit fault. The PMSM is driven by a fault-tolerant multi-level inverter that is utilized to implement a fault-tolerant control strategy to minimize system performance degradation post the fault.The fault-tolerant multi-level inverter is consisting of a number of insulated-gate bipolar transistors (IGBTs). The dynamic current reponses of the PMSM motor due to the switching actions of these IGBTs are used extract the saliency position. This process is not introducing any modification to the operation of the fault-tolerant multil-level inverter as it uses only the fundamental pulse width modulation (PWM) waveform. Moreover,it considers the modifications introduced to the PMSM motor and the multi-level inverter post the fault.Simulation results are provided to verify the effectiveness of the proposed strategy of saliency tracking of a PMSM motor driven by a fault-tolerant four-leg multi-level inverter over a wide range of speeds in the case of a single-phase open circuit fault.
A Modelling and Simulation of a Sensorless Control of Five-phase PMSM Drives using Multi-dimension Space Vector Modulation Kamel Saleh; Mark Sumner
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 4: December 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i4.3996

Abstract

This paper is under in-depth investigation due to suspicion of possible plagiarism on a high similarity indexThis paper introduces a new method to track the saturation saliency for position measurement of a five-phase PMSM motor fed by a five-phase inverter through measuring the dynamic current response of the motor line currents due to the IGBT switching actions. The new method uses only the fundamental PWM waveform obtained using the multi-phase space vector pulse width modulation (i.e there is no modification to the operation of the five-phase inverter) similar to the fundamental PWM method proposed for a three-leg inverter. Simulation results are provided to verify the effectiveness of the proposed strategy for saliency tracking of a five-phase PMSM motor driven by five-phase inverter over a wide speed ranges under different load conditions.