Claim Missing Document
Check
Articles

Found 4 Documents
Search

Sensorless Control of a Fault-Tolerant Multi-Level PMSM Drive Kamel Saleh; Mark Sumner
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.9647

Abstract

This paper presents a new technique to track the saliency position in a permanent magnet synchronous motor (PMSM) post a single phase open-circuit fault. The PMSM is driven by a fault-tolerant multi-level inverter that is utilized to implement a fault-tolerant control strategy to minimize system performance degradation post the fault.The fault-tolerant multi-level inverter is consisting of a number of insulated-gate bipolar transistors (IGBTs). The dynamic current reponses of the PMSM motor due to the switching actions of these IGBTs are used extract the saliency position. This process is not introducing any modification to the operation of the fault-tolerant multil-level inverter as it uses only the fundamental pulse width modulation (PWM) waveform. Moreover,it considers the modifications introduced to the PMSM motor and the multi-level inverter post the fault.Simulation results are provided to verify the effectiveness of the proposed strategy of saliency tracking of a PMSM motor driven by a fault-tolerant four-leg multi-level inverter over a wide range of speeds in the case of a single-phase open circuit fault.
A Modelling and Simulation of a Sensorless Control of Five-phase PMSM Drives using Multi-dimension Space Vector Modulation Kamel Saleh; Mark Sumner
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 4: December 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i4.3996

Abstract

This paper is under in-depth investigation due to suspicion of possible plagiarism on a high similarity indexThis paper introduces a new method to track the saturation saliency for position measurement of a five-phase PMSM motor fed by a five-phase inverter through measuring the dynamic current response of the motor line currents due to the IGBT switching actions. The new method uses only the fundamental PWM waveform obtained using the multi-phase space vector pulse width modulation (i.e there is no modification to the operation of the five-phase inverter) similar to the fundamental PWM method proposed for a three-leg inverter. Simulation results are provided to verify the effectiveness of the proposed strategy for saliency tracking of a five-phase PMSM motor driven by five-phase inverter over a wide speed ranges under different load conditions.
Multi-dimension SVPWM-based sensorless control of 7-phase PMSM drives Kamel Saleh; Mark Sumner
Bulletin of Electrical Engineering and Informatics Vol 12, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i2.4665

Abstract

A new control technique for the 7-phase permanent magnet synchronous machine (PMSM) when a failure in the speed sensor is introduced. This will make the whole drive system more robust and at the same time reduce the cost. The speed and the position of the shaft of the motor are obtained by tracking the saturation saliency of the 7-phase motor when a failure in speed sensor is occurred. The proposed saliency-tracking algorithm is based on measuring the derivative of the stator currents of the 7-phase motor after the switching of the insulated gate bipolar transistor (IGBT) of the 7-phase inverter due to the implementation of the multi-dimension space vector pulse width modulation (SVPWM). This modulation technique is used in the 7-phase drives to suppress the 3rd and 5th harmonics. Simulation results show that the 7-phase motor drive could track the reference speed at different load conditions when a failure in the speed sensor is occurred without compromising the performance.
Control of 7-phase permanent magnet synchronous motor drive post three failures Kamel Saleh; Mark Sumner
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5006-5025

Abstract

The article is introducing a new control technique for the 7-phase permanent magnet synchronous motor (PMSM) drive to enhance its robustness against the failure of phases ‘a’ and ‘c’ in addition to the failure of the encoder occurring simultaneously. The article is firstly developing a new multi-dimension space vector pulse width modulation (SVPWM) technique as a part of the fault-tolerant control technique (FTC) to control the magnitudes and angles of the motor’s current after the failures of phases ‘a’ and ‘c’. Moreover, the paper is developing another FTC to obtain a sensorless operation of the 7-phase motor after the failure in the encoder while the phase ‘a’ and ‘c’ are faulted based on the tracking of the saturation saliency. Simulation results prove that the ripple in the speed post the three failures was maintained to be less than 10 rpm compared to 2 rpm when the 7-phase drive is running without faults. In addition to that, the results demonstrated that the motor responded to instant changes in speeds and loads with a dynamic response very close to that obtained when the 7-phase motor ran under healthy operating conditions.