This Author published in this journals
All Journal Teknika
Anis R. Amna
Program Studi Teknik Informatika, Universitas 17 Agustus 1945 Surabaya

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi Decision Tree C4.5 Untuk Menentukan Status Berat Badan dan Kebutuhan Energi Pada Anak Usia 7-12 Tahun Supangat Supangat; Anis R. Amna; Titasari Rahmawati
Teknika Vol 7 No 2 (2018): November 2018
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v7i2.90

Abstract

Decision Tree 4.5 merupakan salah satu algoritma klasifikasi yang banyak digunakan untuk memperoleh hasil klasifikasi non biner. Dibanding algoritma sejenis, Decision Tree 4.5 memiliki kelebihan pada kemampuan untuk mengelola data dalam berbagai format. Kelebihan inilah yang dicoba dimanfaatkan untuk memperoleh hasil klasifikasi kebutuhan nutrisi bagi anak usia sekolah dasar. Berdasarkan hasil pengujian menggunakan Decision Tree terhadap 360 siswa sekolah dasar berusia 7-12 tahun, diperoleh hasil bahwa 79,7% siswa memiliki berat badan normal, 12,5% siswa mengalami kekurangan berat badan, dan 7,8% siswa mengalami kelebihan berat badan. Dari kondisi tersebut, pengujian lebih lanjut menggunakan Decision Tree menunjukkan bahwa faktor usia, berat badan, tinggi badan, BMR, dan BMI memiliki kontribusi pada penentuan kebutuhan energi pada anak, dan jenis kelamin mempengaruhi pada proses penentuan kebutuhan konsumsi karbohidrat, protein, lemak, dan serat.
Pemanfaatan Fitur Analisis Data Menggunakan K-Means Cluster Dalam Point of Sales (POS) Supangat; Anis R. Amna
Teknika Vol 8 No 2 (2019): November 2019
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v8i2.157

Abstract

Pemanfaatan big data untuk meningkatkan performa usaha banyak menjadi pembahasan penelitian akhir-akhir ini. Ketersediaan data yang mampu diakses secara cepat untuk mereproduksi informasi baru yang penting dalam pengambilan keputusan menjadi salah satu faktor kunci yang menentukan keberhasilan organisasi. K-Means cluster sebagai salah satu algoritma data mining dengan kemampuan pengelompokan data merupakan salah satu tools yang penting untuk melakukan hal ini. Penelitian ini akan membahas implementasi algoritma K-Means untuk menghasilkan informasi baru berupa klasifikasi kelompok produk berdasarkan data transaksi penjualan di masa lalu. Algoritma ini selanjutnya akan menjadi fitur pada Sistem Informasi Point of Sales (POS) yang dikembangkan. Dengan adanya fitur baru pada sistem informasi POS, diharapkan pemilik usaha dapat merencanakan jumlah dan waktu pembelian produk dengan lebih baik, mengurangi jumlah persediaan barang di gudang, dan memberikan keleluasaan bagi pemilik usaha untuk menganalisis permintaan dengan mudah.