Jane Eva Aurelia
Universitas Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Cervical cancer classification using convolutional neural network-support vector machine Jane Eva Aurelia; Zuherman Rustam; Ilsya Wirasati
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 5: October 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i5.20406

Abstract

Cervical cancer is the second most common cancer in women worldwide, and occurs when there are presences of abnormal cells in the cervix, which continue to grow uncontrollably. In the early stages, cervical cancer indications are not perceptible; however, it is easily detected with different forms of machine learning methods, such as the convolutional neural network (CNN). This is a popular method with a wide range of applications and known for its high accuracy value. Moreover, there is a support vector machine (SVM) with several kernel functions that is commonly used in the classification of diseases, and also known for its high accuracy value. Therefore, the combination of CNN–SVM with several linear kernels functions as classifier for the categorization of cervical cancer.
A hybrid model based on convolutional neural networks and fuzzy kernel K-medoids for lung cancer detection Glori Stephani Saragih; Zuherman Rustam; Jane Eva Aurelia
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp126-133

Abstract

Lung cancer is the deadliest cancer worldwide. Correct diagnosis of lung cancer is one of the main tasks that is challenging tasks, so the patient can be treated as soon as possible. In this research, we proposed a hybrid model based on convolutional neural networks (CNN) and fuzzy kernel k-medoids (FKKM) for lung cancer detection, where the magnetic resonance imaging (MRI) images are transmitted to CNN, and then the output is used as new input for FKKM. The dataset used in this research consist of MRI images taken from someone who had lung cancer with the treatment of anti programmed cell death-1 (anti-PD1) immunotherapy in 2016 that obtained from the cancer imaging archive. The proposed method obtained accuracy, sensitivity, precision, specificity, and F1-score 100% by using radial basis function (RBF) kernel with sigma of {10­­-8, 10­­-4, 10­­-3, 5x10­­-2, 10­­-1, 1, 10­­4} in 20-fold cross-validation. The computational time is only taking less than 10 seconds to forward dataset to CNN and 3.85 ± 0.6 seconds in FKKM model. So, the proposed method is more efficient in time and has a high performance for detecting lung cancer from MRI images.