Mohd Ruddin Ab. Ghani
Universiti Teknikal Malaysia Melaka

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Modelling of solar micro gas turbine for parabolic dish based controller application Syariffah Othman; Mohd Ruddin Ab. Ghani; Zanariah Jano; Tole Sutikno
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16676

Abstract

Dish-Stirling unit and photovoltaic panels are the premier technologies available to generate off-grid solar energy. The major issue for both systems is in terms of producing output power. Air-Brayton cycle was utilized asan engine by converting the thermal energy to electricity. Micro gas turbine (MGT) has been recognized as one of the viable alternatives compared to Stirling engines, where it represents a state-of-art parabolic dish engine specifically in turbine gas technology. Hence, the microgas turbine is a technology that is capable of controlling low carbon while providing electricity in off-grid regions. MGT uses any gas as its input like natural gas, bio gas and others. Micro gas turbine has advantages for its high expansion ratio and less moving components. Compared to competing for diesel generators, the electricity costs from hybrid solar units were reduced between 10% and 43%, where  as specific CO2 emissions reduced by 20-35%. MGT provides advantages over photovoltaic systems such as the inherent ability to hybridize the systems with hydrocarbon fuels to produce electricity around the clock, and the ability to operate more effectively in very hot climates with photovoltaic performance degradation over the life time of the  system. Hybrid solar micro gas-turbines are cost-effective, eco-friendly and pollution free as they can work by burning any gas like natural gas,landfill gasa and others.This paper presented the controls contained in the MGT-dish system consisted of temperature control, fuel flow control, speed and acceleration control. Aconceptual design of the 25kW MGT-dish system was also covered.
Fuzzy Logic Implementation with MATLAB for PV-Wind Hybrid System Alias Khamis; Mohd Ruddin Ab. Ghani; Chin Kim Gan; Mohd Shahrieel Mohd Aras; Muhamad Fiqry Khamis; Tole Sutikno; Jano Zanariah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 3: September 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i3.6099

Abstract

This paper is under in-depth investigation due to suspicion of possible plagiarism on a high similarity indexThe development of hybrid renewable energy sources is vital in power generation. This study focused on design of fuzzy logic control on hybrid PV/Wind system in order to improve the speed of DC motor. The fuzzy logic control based on battery management system has been designed for effective power utilization and improvement of the DC motor speed performance. In battery management system, a control was proposed to operate the charging and discharging mode of battery during non-linear power generation. While the battery would charge whenever the renewable energy power was greater than consumer load power, the battery would discharge whenever the renewable energy power was less than the consumer load power. DC motor speed control, included the simulation, implementation of fuzzy logic controller to DC motor and comparison between PID controller and Fuzzy Logic Controller. The proposed model was simulated using Matlab environment and the results was analyzed. Finally, simulation results were evaluated and validated to determine the effectiveness of the proposed controller.
Fuzzy controlled SVC for power system damping Zalina Kamis; Mohd Ruddin Ab. Ghani; Muhammad Nizam Kamaruddin; Hairol Nizam Mohd Shah
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i3.pp1673-1678

Abstract

This paper presents the ability of the fuzzy logic-based stabilizer used to generate the supplementary voltage control signal of the SVC to improve the damping of the inter-area mode oscillation in the power system. The base system is symmetrical, consisting of two identical areas connected by a relatively weak tie line. The SVC is chosen to be installed at the tie line midpoint. The active power of the local line will be used as an input signal for the stabilizer. The additional signal is calculated using fuzzy membership function to determine the quantity of reactive power supplied absorbed by SVC. The system oscillation is indicated by a 3-phase-to-ground short circuit occurring at 0.2s of the simulation and subsequently clearing after 100ms. Simulation with the sample power system shows that when subjected to a disturbance, fuzzy logic-based SVC stabilizer provides good damping in inter-area mode oscillation for the system. The effectiveness of the stabilizer applied with and without PSS will also be investigated.