Mohd Shahrieel Mohd Aras
Universiti Teknikal Malaysia Melaka

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

H-infinity controller with graphical LMI region profile for liquid slosh suppression Mohd Zaidi Mohd Tumari; A. Shamsul Rahimi A. Subki; Mohd Shahrieel Mohd Aras; Mohammad 'Afif Kasno; Mohd Ashraf Ahmad; Mohd Helmi Suid
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 5: October 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i5.11252

Abstract

This paper presents a H-infinity synthesis with pole clustering based on LMI region schemes for liquid slosh control. Using LMI approach, the regional pole placement known as LMI region combined with design objective in H-infinity controller guarantee a fast input tracking capability and very minimal liquid slosh. A graphical profile of the transient response of liquid slosh suppression system with respect to pole placement is very useful in giving more flexibility to the researcher in choosing a specific LMI region. With the purpose to confirm the design of control scheme, a liquid slosh model is considered to represent the lateral slosh movement. Supremacy of the proposed approach is shown by comparing the results with hybrid model-free fuzzy-PID controller with derivative filter. The performance of the control schemes is examined in terms of time response specifications of lateral tank tracking capability and level of liquid slosh reduction.
Comprehensive study of current trend of the remotely operated vehicle for underwater systems Fauzal Naim Zohedi; Mohd Shahrieel Mohd Aras; Hyreil Anuar Kasdirin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 20, No 2: April 2022
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v20i2.22835

Abstract

This paper aim to provide a basic fundamental knowledge for researchers on underwater remotely operated vehicle (ROV) system and current trend of ROV controller. The vehicle is used for exploration, investigation or inspection of underwater environment as a replacement of human due to human limitation. It can dive deeper than human and can be manoeuvred into hazard environment. In this paper, the basic development and classification of ROV is discussed. The modelling of ROV, manoeuvrability and controller designed by researchers since 1990 also being discussed. It is expected that this paper will help readers in doing research on the controller of ROV.
Fuzzy Logic Implementation with MATLAB for PV-Wind Hybrid System Alias Khamis; Mohd Ruddin Ab. Ghani; Chin Kim Gan; Mohd Shahrieel Mohd Aras; Muhamad Fiqry Khamis; Tole Sutikno; Jano Zanariah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 3: September 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i3.6099

Abstract

This paper is under in-depth investigation due to suspicion of possible plagiarism on a high similarity indexThe development of hybrid renewable energy sources is vital in power generation. This study focused on design of fuzzy logic control on hybrid PV/Wind system in order to improve the speed of DC motor. The fuzzy logic control based on battery management system has been designed for effective power utilization and improvement of the DC motor speed performance. In battery management system, a control was proposed to operate the charging and discharging mode of battery during non-linear power generation. While the battery would charge whenever the renewable energy power was greater than consumer load power, the battery would discharge whenever the renewable energy power was less than the consumer load power. DC motor speed control, included the simulation, implementation of fuzzy logic controller to DC motor and comparison between PID controller and Fuzzy Logic Controller. The proposed model was simulated using Matlab environment and the results was analyzed. Finally, simulation results were evaluated and validated to determine the effectiveness of the proposed controller.
Sign Detection Vision Based Mobile Robot Platform Hairol Nizam Mohd Shah; Mohd Zamzuri Ab Rashid; Zalina Kamis; Mohd Shahrieel Mohd Aras; Nursabillilah Mohd Ali; Faizil Wasbari; Tengku Muhammad Mahfuz Tengku Anuar
Indonesian Journal of Electrical Engineering and Computer Science Vol 7, No 2: August 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v7.i2.pp524-532

Abstract

Vision system applied in electrical power generated mobile robot to provide a comfortable ride while providing comfort to tourist to interact with visitors. The camera is placed in front of the mobile robot to snap the images along in pathways. The system can recognized the sign which are right, left and up by using Harris corner algorithms and will be display in Graphical User Interface (GUI). A sign can be determined from the vertex coordinates according to the degree to distinguish the direction of the sign. The system will be tested in term of percentage of success in Harris point detection and availability to detect sign with different range. The result show the even though not all Harris point in an image can be detected but most of the images possible to recognise it sign direction.
Small Scale Unmanned Underwater Remotely Operated Crawler (ROC) Mohd Shahrieel Mohd Aras; Muhammad Nizam Kamarudin; Muhammad Hanif Bin Che Rusli; Muhammad Iktisyam Mohd Zainal
Indonesian Journal of Electrical Engineering and Computer Science Vol 3, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v3.i3.pp481-488

Abstract

This project is describes the development of underwater vehicle which is remotely operated crawler (ROC). The ROC is developed for the implementation of underwater surface floor and used as for rescuing application. This project is aim to reduce the risk the human life and to solve the disability of human to dive to the underwater for rescue and archeologist work in a longer period. Due to the underwater vehicle that can be operated in a larger depth and reducing the liability of the human life. Moreover, the main problem with this ROC application is to travelling under the uneven of the underwater floor and make sure it always have negative buoyant and a good stability to perform at uneven surface of underwater. Furthermore, the ROC need the overcome the obstacle of the underwater surface without any problem. Therefore, the design of ROC is based on four wheel mechanism to maneuver it at the uneven surface. Besides that, the ROC is tethered and control manually by using a joystick controller and the Peripheral Interface Controller (PIC) are used to control this ROC. This method is to fulfill the target of the project that are to develop and fabricate the ROC and to study the performance of the ROC in terms of controllability, stability and maneuverability. As a result, the movement of ROC is analyzing in order to gain the requirement of stability and the buoyancy in the water. Moreover, the development of the ROC can be tested in several experiments which includes overcome obstacle, controllability, and it performances to be operated on the surface floor of underwater. Hence, this project will gives the good impact and benefit related to the underwater industries and can be applied in the rescuing application in the future.
Develop and implementation of PC based controller for humanoid robot using digital potentiometer Hairol Nizam Mohd Shah; Mohd Fairus Abdollah; Zalina Kamis; Mohd Shahrieel Mohd Aras; Mohd Rizuan Baharon; Muhammad Zakwan Akmal Sallehoddin
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 1: July 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i1.pp104-112

Abstract

This paper introduced to develop and implementation of PC based controller for humanoid robot using digital potentiometer. The main objective in this paper is to develop and implement the joystick controller by using a digital potentiometer circuit board that be able to control the humanoid robot movement. The Arduino board and digital potentiometer will be integrated by connecting both pins in between wiper, W pin and ground, GND to the DB9 pins of remote control platform, which is TX and RX pins respectively. Humanoid robot as known as TOMY i-SOBOT is used as a preferred model due to wide usage in many applications. A digital potentiometer will be transmitted the voltage and current value depend on the digital level through serial communication to give the instruction for humanoid robot movement. The humanoid movement based on Guided User Interface (GUI) where the user give a commands by pressing the button on the GUI such as turn left, right, forward, and reverse. The results show that the humanoid movement able to control based on the voltage and current in a digital potentiometers value.