Effendi, Yutika Amelia
Universitas Airlangga

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Hierarchy Process Mining from Multi-Source Logs Riyanarto Sarno; Yutika Amelia Effendi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 4: December 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i4.6326

Abstract

Nowadays, large-scale business processes is growing rapidly; in this regards process mining is required to discover and enhance business processes in different departments of an organization. A process mining algorithm can generally discover the process model of an organization without considering the detailed process models of the departments, and the relationship among departments. The exchange of messages among departments can produce asynchronous activities among department process models. The event logs from departments can be considered as multi-source logs, which cause difficulties in mining the process model. Discovering process models from multi-source logs is still in the state of the art, therefore this paper proposes a hierarchy high-to-low process mining approach to discover the process model from a complex multi-source and heterogeneous event logs collected from distributed departments. The proposed method involves three steps; i.e. firstly a high level process model is developed; secondly a separate low level process model is discovered from multi-source logs; finally the Petri net refinement operation is used to integrate the discovered process models. The refinement operation replaced the abctract transitions of a high level process model with the corresponding low level process models. Multi-source event logs from several departments of a yarn manufacturing were used in the computational study, and the results showed that the proposed method combined with the modified time-based heuristics miner could discover a correct parallel process business model containing XOR, AND, and OR relations.
Improved fuzzy miner algorithm for business process discovery Yutika Amelia Effendi; Riyanarto Sarno; Danica Virlianda Marsha
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 6: December 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i6.19015

Abstract

Return material authorization (RMA) is a process in which a company decides to repair or replace customer’s defect product during the warranty period. To execute RMA, both company and customer obliged to follow standard operating procedure (SOP) which usually consists of many business processes of a company well. As the business process could cause inefficiencies, a company should improve their business process regularly. The best way is using process discovery. This research proposes a new improved fuzzy miner algorithm to represent binary correlation between activities. This new algorithm utilizes binary significance and binary correlation equally to acquire fuzzy model. While the original fuzzy miner algorithm uses various binary correlation metrics, the improved fuzzy miner algorithm uses only one metric and could capture the fuzzy model, accurately based on the event logs to capture more accurate business process model. In this research, ProM fuzzy miner is used as a comparison to the proposed improved time-based fuzzy miner. The results showed that the improved algorithm has higher value on conformance checking and able to capture business process model based on time interval, by using only time-interval significance as a binary correlation metrics.
Time-based α+ miner for modelling business processes using temporal pattern Yutika Amelia Effendi; Riyanarto Sarno
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 1: February 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i1.12733

Abstract

Business processes are implemented in an organization. When a business process is run, it generates event log. One type of event log is double timestamp event log. Double timestamp has the start and complete time of each activity executed in the business process and has a close relationship with temporal pattern. In this paper, seven types of temporal pattern between activities were presented as extended version of relations used in the double timestamp event log. Since the event log was not always executed in sequential way, therefore using temporal pattern, event log was divided into several small groups to mine the business process both sequential and parallel. Both temporal pattern and Time-based α+ Miner algorithm were used to mine process model, determined sequential and parallel relations and then evaluated the process model using fitness value. This paper was focused on the advantages of temporal pattern implemented in Time-based α+ Miner algorithm to mine business process. The results also clearly stated that the proposed method could present better result rather than that of original α+ Miner algorithm.