Holman Montiel
Universidad Distrital Francisco José de Caldas

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Comparative study of optimization algorithms on convolutional network for autonomous driving Fernando Martinez; Holman Montiel; Fredy Martinez
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6363-6372

Abstract

he last 10 years have been the decade of autonomous vehicles. Advances in intelligent sensors and control schemes have shown the possibility of real applications. Deep learning, and in particular convolutional networks have become a fundamental tool in the solution of problems related to environment identification, path planning, vehicle behavior, and motion control. In this paper, we perform a comparative study of the most used optimization strategies on the convolutional architecture residual neural network (ResNet) for an autonomous driving problem as a previous step to the development of an intelligent sensor. This sensor, part of our research in reactive systems for autonomous vehicles, aims to become a system for direct mapping of sensory information to control actions from real-time images of the environment. The optimization techniques analyzed include stochastic gradient descent (SGD), adaptive gradient (Adagrad), adaptive learning rate (Adadelta), root mean square propagation (RMSProp), Adamax, adaptive moment estimation (Adam), nesterov-accelerated adaptive moment estimation (Nadam), and follow the regularized leader (Ftrl). The training of the deep model is evaluated in terms of convergence, accuracy, recall, and F1-score metrics. Preliminary results show a better performance of the deep network when using the SGD function as an optimizer, while the Ftrl function presents the poorest performances.