Muammar Mohamad Isa
Universiti Malaysia Perlis

Published : 12 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 12 Documents
Search

Self-switching diodes as RF rectifiers: evaluation methods and current progress Nor Farhani Zakaria; Shahrir Rizal Kasjoo; Muammar Mohamad Isa; Zarimawaty Zailan; Mohd Khairuddin Md Arshad; Sanna Taking
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.439 KB) | DOI: 10.11591/eei.v8i2.1413

Abstract

In the advancement of the Internet of Things (IoT) applications, widespread uses and applications of devices require higher frequency connectivity to be explored and exploited. Furthermore, the size, weight, power and cost demands for the IoT ecosystems also creates a new paradigm for the hardware where improved power efficiency and efficient wireless transmission needed to be investigated and made feasible. As such, functional microwave detectors to detect and rectify the signals transmitted in higher frequency regions are crucial. This paper reviewed the practicability of self switching diodes as Radio Frequency (RF) rectifiers. The existing methods used in the evaluation of the rectification performance and cut-off frequency are reviewed, and current achievements are then concluded. The works reviewed in this paper highlights the functionality of SSD as a RF rectifier with design simplicity, which may offer cheaper alternatives in current high frequency rectifying devices for application in low-power devices.
Bandwidth and gain enhancement of a circular microstrip antenna using a DNG split ring resonator radome Ojo Rasheed; Mohd Faizal Jamlos; Ping Jack Soh; Mohd Aminudin Jamlos; Muammar Mohamad Isa
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (564.981 KB) | DOI: 10.11591/eei.v8i2.1429

Abstract

This paper present the design of a circular patch microstrip antenna with enhancement in terms of bandwidth and gain using a dielectric double negative (DNG) split ring metamaterial radome. This radome is positioned on top of the CP antenna operating from 5.2 GHz to 6.4 GHz. The metamaterial radome comprises of two alternate split rings of negative permittivity, permeability and refractive index. The circular microstrip antenna bandwidth of 430 MHz has been realized by the presence of DNG metamaterial radome compared to 220 MHz without the radome. The gain has been increased as well from 1.84 dBi to 3.87 dBi.