Mohammed Y. Suliman
Northern Technical University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Harmonics resonance elimination technique using active static compensation circuit Rakan Khalil Antar; Mohammed Y. Suliman; Asef A. Saleh
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.3148

Abstract

The existence of nonlinear loads produces high distortion and low power factor in the power system that leads to get poor power quality. Resonance problem is occurred due to the power system inductances and the compensation capacitors which increases the harmonic distortion. Therefore, it is necessary to prevent the action of resonance even if conventional or modern methods are built to improve the power system quality. In this paper, active static compensation circuit is proposed and designed to have the features of improving power factor, reducing THD, and eliminating the harmonics resonance effect at the same time with different linear and nonlinear load conditions. These features have been performed based on a modified pulse width modulation technique to drive and control the proposed circuit. The originality designed point of this technique is to have ability to operate the active static compensation circuit as harmonics injector, power factor corrector and resonance eliminator at the same time. Simulation model results illustrate that the proposed circuit is effective for both steady-state and transient operations conditions. The THD of the supply voltage and current at firing angle (α=300) is reduced by 99% and 98.8% respectively. While the power factor is improved to stay around unity.
Power flow control in parallel transmission lines based on UPFC Mohammed Y. Suliman; Mahmood T. Al-Khayyat
Bulletin of Electrical Engineering and Informatics Vol 9, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1008.615 KB) | DOI: 10.11591/eei.v9i5.2290

Abstract

The power flow controlled in the electric power network is one of the main factors that affected the modern power systems development. The unified power flow controller (UPFC) is a FACTS powerful device that can control both active and reactive power flow of parallel transmission lines branches. In this paper, modelling and simulation of active and reactive power flow control in parallel transmission lines using UPFC with adaptive neuro-fuzzy logic is proposed. The mathematical model of UPFC in power flow is also proposed. The results show the ability of UPFC to control the flow of powers components "active and reactive power" in the controlled line and thus the overall power regulated between lines.