Sudarmani Rajagopal
Avinashilingam Institute for Home Science and higher Education for Women

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance analysis of peak signal-to-noise ratio and multipath source routing using different denoising method Kannadhasan Suriyan; Nagarajan Ramaingam; Sudarmani Rajagopal; Jeevitha Sakkarai; Balakumar Asokan; Manjunathan Alagarsamy
Bulletin of Electrical Engineering and Informatics Vol 11, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i1.3332

Abstract

The problem of denoising iris pictures for iris identification systems will be discussed, as well as a novel solution based on wavelet and median filters. Different salt and pepper extraction algorithms, as well as Gaussian and speckle noises, were used. Because diverse sounds decrease picture quality during image collection, noise reduction is even more important. To reduce sounds like salt and pepper, Gaussian, and speckle, filtering (median, wiener, bilateral, and Gaussian) and wavelet transform are utilised. Provide better results as compared to other ways. A study of several efficiency indicators such as peak signal-to-noise ratio (PSNR) and mean squared error will be used to demonstrate the superiority of the proposed technique (MSE).
SDSFLF: fault localization framework for optical communication using software digital switching network Chitra Raju; Sudarmani Rajagopal; Kanagaraj Venusamy; Kannadhasan Suriyan; Manjunathan Alagarsamy
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 12, No 1: March 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v12.i1.pp113-124

Abstract

Optical network is an emerging technology for data communication inworldwide. The information is transmitted from the source to destination through the fiber optics. All optical network (AON) provides good transmission transparency, good expandability, large bandwidth, lower bit error rate (BER), and high processing speed. Link failure and node failure haveconsistently occurred in the traditional methods. In order to overcome the above mentioned issues, this paper proposes a robust software defined switching enabled fault localization framework (SDSFLF) to monitor the node and link failure in an AON. In this work, a novel faulty node localization (FNL) algorithm is exploited to locate the faulty node. Then, the software defined faulty link detection (SDFLD) algorithm that addresses the problem of link failure. The failures are localized in multi traffic stream (MTS) and multi agent system (MAS). Thus, the throughput is improved in SDSFLF compared than other existing methods like traditional routing and wavelength assignment (RWA), simulated annealing (SA) algorithm, attackaware RWA (A-RWA) convex, longest path first (LPF) ordering, and biggest source-destination node degree (BND) ordering. The performance of the proposed algorithm is evaluated in terms of network load, wavelength utilization, packet loss rate, and burst loss rate. Hence, proposed SDSFLF assures that high performance is achieved than other traditional techniques.