Claim Missing Document
Check
Articles

Found 8 Documents
Search

Analisis Distribusi Medan Listrik pada Isolator Gantung Jenis Polimer akibat Pengaruh Kontaminan Fahmi, Daniar; Yulistya, I Made; Asfani, Dimas Anton; Afif, Yusrizal
JURNAL NASIONAL TEKNIK ELEKTRO Vol 4, No 2: September 2015
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (896.631 KB) | DOI: 10.25077/jnte.v4n2.158.2015

Abstract

The paper investigates the electric field distribution in polymer suspension insulator when exposed to contaminants. The analyzed suspension insulator has glass core and will be simulated using FEM (Finite Element Method) software. Contaminant used is sea water. Simulations carried out by comparing the condition of the electric field on the surface of the insulator which is contaminated by seawater with normal conditions. In addition, the influence of the contact angle on the characteristics of the electric field distribution in insulators will also be analyzed. Therefore, the shape of contaminants are varied by considering the contact angle Then, to determine the deeper influence of contaminant, the analysis is carried out in three different places, which is the core part, the surface of the insulator and the fin closest to the working voltage insulator. From the conducted analysis, it is known that the contaminants are not much affected the electric field distribution at the core, but became very influential in the distribution of the electric field at the surface of the insulator and the fin closest to the working voltage insulator. Furthermore, the contact angle of contaminants affects the characteristics of the distribution of the electric field significantlyKeywords : Glass Core Rod, Polymer Suspension Insulator, Sea Water Contaminant, Contact Angle Abstrak—Paper ini menyelidiki distribusi medan listrik pada isolator gantung berbahan polimer ketika isolator tersebut terkena kontaminan. Isolator gantung yang dianalisis mempunyai inti gelas dan akan disimulasikan menggunakan perangkat lunak berbasis FEM (Finite Element Method). Kontaminan yang digunakan adalah air laut. Simulasi dilakukan dengan membandingkan kondisi medan listrik pada permukaan isolator yang terkontaminasi air laut dengan kondisi normal. Selain itu, juga akan dianalisis pengaruh sudut kontak terhadap karakteristik distribusi medan listrik di isolator. Oleh karena itu, bentuk kontaminan divariasikan dengan mempertimbangkan sudut kontak Kemudian, untuk mengetahui pengaruh lebih dalam, analisis dilakukan di tiga tempat yang berbeda, yaitu pada bagian inti, permukaan isolator dan sirip terdekat dengan tegangan kerja isolator. Dari analisis yang dilakukan, diketahui bahwa kontaminan yang menempel tidak banyak mempengaruhi persebaran medan listrik pada bagian inti, namun menjadi sangat berpengaruh pada persebaran medan listrik di permukaan isolator dan sirip terdekat dengan tegangan kerja isolator. Lebih jauh lagi, sudut kontak dari kontaminan mempengaruhi besar dan karakteristik dari persebaran medan listrik secara signifikan.Kata Kunci : Batang Inti Bahan Gelas, Isolator Gantung Polimer, Kontaminan Air Laut, Sudut Kontak
Reliability and performance analysis of a mini solar home system installed in Indonesian household Prisma Megantoro; Hafidz Faqih Aldi Kusuma; Sinta Adisti Reina; Abdul Abror; Lilik Jamilatul Awalin; Yusrizal Afif
Bulletin of Electrical Engineering and Informatics Vol 11, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i1.3335

Abstract

During the COVID-19 pandemic since early 2020 in Indonesia, the demand for electrical energy in the housing sector has increased significantly. This is due to the government’s recommendation to reduce activities on the outside and work from home, specifically for educational and entertainment activities. Those are almost recommended to be done online. Many people complain about the increase in monthly electricity payments compared to before the pandemic. The construction of solar power plants in housing/solar home systems (SHS) will reduce the electricity consumption from the public grid. This SHS installation can be used to supply some household electricity needs, such as computers, televisions, internet facilities, lighting, et cetera. In this article, the researchers discuss the performance testing of SHS with a capacity of 300 Wp. It is installed in the house buildings accompanied by the design and measurement of solar energy potential.
Analisis Distribusi Medan Listrik pada Isolator Gantung Jenis Polimer akibat Pengaruh Kontaminan Daniar Fahmi; I Made Yulistya; Dimas Anton Asfani; Yusrizal Afif
JURNAL NASIONAL TEKNIK ELEKTRO Vol 4 No 2: September 2015
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (896.631 KB) | DOI: 10.25077/jnte.v4n2.158.2015

Abstract

The paper investigates the electric field distribution in polymer suspension insulator when exposed to contaminants. The analyzed suspension insulator has glass core and will be simulated using FEM (Finite Element Method) software. Contaminant used is sea water. Simulations carried out by comparing the condition of the electric field on the surface of the insulator which is contaminated by seawater with normal conditions. In addition, the influence of the contact angle on the characteristics of the electric field distribution in insulators will also be analyzed. Therefore, the shape of contaminants are varied by considering the contact angle Then, to determine the deeper influence of contaminant, the analysis is carried out in three different places, which is the core part, the surface of the insulator and the fin closest to the working voltage insulator. From the conducted analysis, it is known that the contaminants are not much affected the electric field distribution at the core, but became very influential in the distribution of the electric field at the surface of the insulator and the fin closest to the working voltage insulator. Furthermore, the contact angle of contaminants affects the characteristics of the distribution of the electric field significantlyKeywords : Glass Core Rod, Polymer Suspension Insulator, Sea Water Contaminant, Contact Angle Abstrak—Paper ini menyelidiki distribusi medan listrik pada isolator gantung berbahan polimer ketika isolator tersebut terkena kontaminan. Isolator gantung yang dianalisis mempunyai inti gelas dan akan disimulasikan menggunakan perangkat lunak berbasis FEM (Finite Element Method). Kontaminan yang digunakan adalah air laut. Simulasi dilakukan dengan membandingkan kondisi medan listrik pada permukaan isolator yang terkontaminasi air laut dengan kondisi normal. Selain itu, juga akan dianalisis pengaruh sudut kontak terhadap karakteristik distribusi medan listrik di isolator. Oleh karena itu, bentuk kontaminan divariasikan dengan mempertimbangkan sudut kontak Kemudian, untuk mengetahui pengaruh lebih dalam, analisis dilakukan di tiga tempat yang berbeda, yaitu pada bagian inti, permukaan isolator dan sirip terdekat dengan tegangan kerja isolator. Dari analisis yang dilakukan, diketahui bahwa kontaminan yang menempel tidak banyak mempengaruhi persebaran medan listrik pada bagian inti, namun menjadi sangat berpengaruh pada persebaran medan listrik di permukaan isolator dan sirip terdekat dengan tegangan kerja isolator. Lebih jauh lagi, sudut kontak dari kontaminan mempengaruhi besar dan karakteristik dari persebaran medan listrik secara signifikan.Kata Kunci : Batang Inti Bahan Gelas, Isolator Gantung Polimer, Kontaminan Air Laut, Sudut Kontak
Effect of Corona Ring Design and Placement on the Distribution of Electric Fields on 500 kV Gantry Substation in Indonesia Yusrizal Afif; I Made Yulistya Negara; Dimas Anton Asfani
JAREE (Journal on Advanced Research in Electrical Engineering) Vol 2, No 2 (2018): October
Publisher : Department of Electrical Engineering ITS and FORTEI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j25796216.v2.i2.53

Abstract

High electric field intensity in string isolators can trigger corona which results in premature aging of the insulator. One solution to overcome this problem is by installing the corona ring, the corona ring will uniform the electric field distribution of the insulator adjacent to the conductor. However, the dimensions and placement of the corona ring will affect the performance of the corona ring in distributing the electric field. therefore, this study will discuss the effect of dimensions and placement of the corona ring on the electric field distribution. Parameters observed were ring length, ring angle and height of corona ring. Simulation with the finite element method (FEM) is used to model the electric field distribution value for each parameter change. As a comparison, changes in corona ring parameters compared to the corona ring design are commonly used in 500 kv gantry substation in Indonesia. Keywords: Corona ring, Electric field distribution, Finite element method (FEM), Insulator string, Porcelain Insulator.
A practical method to design the solar photovoltaic system applied on residential building in Indonesia Prisma Megantoro; Pinto Anugrah; Yusrizal Afif; Lilik Jamilatul Awalin; P. Vigneshwaran
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1736-1747

Abstract

The use of solar PV system in Indonesia has expanded to various field and area. One example is residential buildings in urban areas. This article discusses calculation methods for designing a solar power generation system that is applied to residential buildings, such as homes, offices, or colleges. Electricity generated from the solar home system (SHS) is used to support many kinds of electrical equipments, where the electrical equipments are used by building occupants in their daily life. The calculation method is considered from the potential of solar energy and the reliability of the on-site system to generate electricity. The system is designed in an off-grid topology by exchanging connections with the public electricity grid owned by PLN. Calculation results shows that this SHS has a generation capacity of 1 kWp, 24 V 300 Ah battery storage, and a 200 W inverter. This SHS can reduce electricity usage in this sector by 18.2 kWh in average every month.
Comparative analysis of evolutionary-based maximum power point tracking for partial shaded photovoltaic Prisma Megantoro; Hafidz Faqih Aldi Kusuma; Lilik Jamilatul Awalin; Yusrizal Afif; Dimas Febriyan Priambodo; Pandi Vigneshwaran
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5717-5729

Abstract

The characteristics of the photovoltaic module are affected by the level of solar irradiation and the ambient temperature. These characteristics are depicted in a V-P curve. In the V-P curve, a line is drawn that shows the response of changes in output power to the level of solar irradiation and the response to changes in voltage to ambient temperature. Under partial shading conditions, photovoltaic (PV) modules experience non-uniform irradiation. This causes the V-P curve to have more than one maximum power point (MPP). The MPP with the highest value is called the global MPP, while the other MPP is the local MPP. The conventional MPP tracking technique cannot overcome this partial shading condition because it will be trapped in the local MPP. This article discusses the MPP tracking technique using an evolutionary algorithm (EA). The EAs analyzed in this article are genetic algorithm (GA), firefly algorithm (FA), and fruit fly optimization (FFO). The performance of MPP tracking is shown by comparing the value of the output power, accuracy, time, and tracking effectiveness. The performance analysis for the partial shading case was carried out on various populations and generations.
Analysis of instrumentation system for photovoltaic pyranometer used to measure solar irradiation level Prisma Megantoro; Muhammad Akbar Syahbani; Sigit Dani Perkasa; Ahmad Rahmad Muzadi; Yusrizal Afif; Agus Mukhlisin; Pandi Vigneshwaran
Bulletin of Electrical Engineering and Informatics Vol 11, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i6.4390

Abstract

A pyranometer is a device used to measure the level of solar irradiation. This device has a sensor that measures the density of the electromagnetic flux of solar radiation on a flat plane. The electromagnetic flux density parameter is converted into an electrical parameter in watts per square meter. Pyranometers are used in weather station devices to analyze and predict weather conditions. Solar power generation systems are usually also installed with this device. It is intended to monitor solar irradiation's condition to examine the generating system's performance. This article discusses the photovoltaic-based pyranometer characterization method. The characterization method is carried out to determine the measurement parameters such as accuracy, precision, and hysteresis. Knowing these parameters will make it possible to see the performance of measuring solar irradiation levels by a measuring instrument for solar irradiation levels, like a pyranometer. The characterization method is to compare the measurement results with standard instruments. The solar irradiance level monitoring is also optimal, accurate, and precise with a reliable measurement method.
Adaptive virtual inertia controller based on machine learning for superconducting magnetic energy storage for dynamic response enhanced Herlambang Setiadi; Muhammad Abdillah; Yusrizal Afif; Rezi Delfianti
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp3651-3659

Abstract

The goal of this paper was to create an adaptive virtual inertia controller (VIC) for superconducting magnetic energy storage (SMES). An adaptive virtual inertia controller is designed using an extreme learning machine (ELM). The test system is a 25-bus interconnected Java Indonesian power grid. Time domain simulation is used to evaluate the effectiveness of the proposed controller method. To simulate the case study, the MATLAB/Simulink environment is used. According to the simulation results, an extreme learning machine can be used to make the virtual inertia controller adaptable to system variation. It has also been discovered that designing virtual inertia based on an extreme learning machine not only makes the VIC adaptive to any change in the system but also provides better dynamics performance when compared to other scenarios (the overshoot value of adaptive VIC is less than -5×10-5).