Claim Missing Document
Check
Articles

Found 2 Documents
Search

An Efficient Palladium-Thiourea Catalysed Heck Cross-Coupling Reaction for Molecular Electronic Interest Khairul, Wan M.; Md Shariff, Mohd Shahrul Shahmi; Rahamathullah, Rafizah; Daud, Adibah Izzati; Shamsuddin, Mustaffa; Che Soh, Siti Kamilah
Makara Journal of Technology Vol. 21, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The synthesis and utilization of C-C bonds formation are concerned about the key steps for the building of several conducting molecular electronics involving many asymmetric catalysts approached, which is an essential task that most researchers would ignore in preparing these materials to enhance the production yield of cross-coupling materials. Despite the enormous progress, there still remains a great demand for economic and practicable cross-coupling processes involving ultra-low catalyst loadings with high turnover numbers due to the employment of conventional metal catalyst. Thus, there has been an excessive interest to cultivate non-phosphine palladium catalysts for excellent achievement of activity, stability, and substrate tolerance which permit the coupling reactions to be conducted under mild reaction condition at ambient atmosphere. In this contribution, N-(4-nitrophenylcarbamothioyl)-N’-(4- methylbenzoyl) thiourea (LT1) and its metal complex of MLT1 featuring Pd (II) have been successfully characterised via typical spectroscopic methods namely; Infrared (IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy, CHNS elemental analysis, and Nuclear Magnetic Resonance (1H and 13C NMR). In turn, catalytic studies of palladium catalyst (MLT1) were tested for its homogenous catalytic activity in Heck cross-coupling reaction. The reaction was monitored by Gas Chromatography-Flame Ionisation Detector (GC-FID). Results reveal that MLT1 exhibits 100% of conversion starting material into a cross-coupling product, which was alkene-based compound.
Photopolymerization of Imprinted Polymer with Dummy Template for the Recognition of Hydroquinone in Aqueous Medium Musali, Norlin Suhaiza; Abu Bakar, Norlaili; Abdul Rahim, Nurulsaidah; Wan Mahamod, Wan Rusmawati; Hashim, Norhayati; Mohd Sharif, Sharifah Norain; Che Soh, Siti Kamilah; Ulianas, Alizar
Indonesian Journal of Chemistry Vol 24, No 5 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.90096

Abstract

This study' purposes are to synthesize molecularly imprinted polymer (MIP) with hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) using p-xylene under ultraviolet curing at 405 nm for the recognition of hydroquinone (HQ) in aqueous medium. The template was extracted from the polymer with a mixture of methanol and acetic acid (9:1) by volume (v/v). The Fourier transform infrared (FTIR) spectrum of MIP (after wash) showed the absence of peak at the range of 840–860 cm−1, which represented the stretching outside the aromatic plane C–H at the para position (p-xylene). Field emission scanning electron microscope (FESEM) micrograph showed that the MIP had cavities compared to non-imprinted polymer (NIP). The MIP (MIP-Pxy) with ratio (monomer:crosslinker) 0.25 and 1.00% template gave the highest uptake of hydroquinone (HQ) in aqueous solution, which implied more specific recognition (highest KD value). The rebinding of HQ onto MIP-Pxy was best described by both isotherm (Langmuir and Freundlich) and kinetic model (pseudo-first and -second). The MIP was successfully synthesized using p-xylene, able to recognize HQ and was very selective to p-CP. Implication of the study, the synthesized MIP can be used for recognition and sensing materials for HQ and any similar molecules.