Claim Missing Document
Check
Articles

Found 5 Documents
Search

ANALISIS DAN DESAIN SISTEM PENILAIAN DAUR HIDUP AYAM POTONG BERBASIS DIGITAL BUSINESS ECOSYSTEM Silmi Azmi; Taufik Djatna; Suprihatin Suprihatin; Nastiti Siswi Indrasti
Jurnal Teknologi Industri Pertanian Vol. 31 No. 2 (2021): Jurnal Teknologi Industri Pertanian
Publisher : Department of Agroindustrial Technology, Bogor Agricultural University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24961/j.tek.ind.pert.2021.31.2.164

Abstract

Chicken meat agroindustry is one of the industries that produce unmeasured and unmonitored environmental impacts. These problems are a challenge for the industry to analyze how to measure and monitor environmental impacts. So, it is necessary to create a system that can measure and monitor environmental impacts through the Life Cycle Assessment (LCA) method. The development of system design based on the Digital Business Ecosystem (DBE) can facilitate interaction between the stakeholders involved. This study aimed to analyse system components, system modeling, and develop an LCA system design of chicken meat. The system design model wasbuilt by UML (Unified Modeling Language). The system design was developed using an Artificial Neural Network (ANN) method to predict the impact of greenhouse gas emissions and the Ordinary Least Squares (OLS) method to determine the most significant contributor. The study's results showed that this system produceed a model that can predict the impact of greenhouse gas emissions by 96.22 % of the actual value, and feed was the most significant contributor. Recommendations for reducing greenhouse gas emissions were increasing feed efficiency, installing an inverter on an ammonia compressor, using environmentally friendly fuels, and utilizing litter and manure as organic fertilizer accompanied by better manure storage management.Keywords: artificial neural network, chicken meat, ordinary least square, life cycle assessment system
Strategi Peningkatan Produktivitas dari Penggunaan Listrik dengan Analisis Jejak Karbon pada Produksi Tepung Karagenan Siti Aminatu Zuhria; Silmi Azmi
Jurnal Optimalisasi Vol 9, No 1 (2023): April
Publisher : Universitas Teuku Umar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35308/jopt.v9i1.5761

Abstract

Produk tepung karagenan merupakan produk yang diperoleh dari hasil ekstraksi rumput laut merah menjadi tepung karagenan. Proses ektrasksi tersebut menghasilkan jejak emisi karbon dari penggunaan listrik pada setiap tahapan proses produksinya. Sistem produksi yang ramah lingkungan menjadi salah satu kunci terwujudnya industri ramah lingkungan dan berkelanjutan. Strategi peningkatan produktivitas harus dilakukan untuk meningkatkan reputasi industri dengan memperbaiki sistem produksi melalui analisis jejak karbon yang terbentuk dalam menghasilkan produk. Penelitian ini bertujuan untuk menghitung besarnya emisi karbon yang terbentuk pada proses produksi tepung karagenan dan memberikan upaya rekomendasi perbaikan yang dapat dilakukan. Metode penelitian ini yaitu kuantitatif dengan menganalisis potensi jejak emisi karbon menggunakan perhitungan emisi Gas Rumah Kaca (GRK). Penelitian ini mengggunakan data primer dan sekunder. Penelitian dilakukan dengan mengidentifikasi proses produksi tepung karagenan, menganalisis jumlah konsumsi listrik dan jumlah karbon pada setiap tahapan proses produksi, dan mengkaji strastegi upaya perbaikan untuk meminimasi terbentuknya emisi karbon di industri karagenan. Hasil analisis menunjukkan  bahwa proses produksi karagenan menghasilkan jejak karbon (Carbon Footprint) sebesar 3,75 KgCO2/Kg tepung karagenan. Jejak karbon tertinggi dari penggunaan listrik yaitu pada tahapan proses dewatering sebesar 67,66 kgCO2eq. Strategi rekomendasi perbaikan yang dapat dilakukan untuk mengurangi emisi karbon yang dihasilkan yaitu menggunakan listrik secara bijak, mengganti sumber energi pembangkit listrik dan merekayasa proses produksi.
The Assessment of Environmental Impact of the Chicken Meat Agroindustry in Indonesia: Life Cycle Assessment (LCA) Perspective S. Azmi; Suprihatin; N. S. Indrasti; M. Romli
Tropical Animal Science Journal Vol. 46 No. 2 (2023): Tropical Animal Science Journal
Publisher : Faculty of Animal Science, Bogor Agricultural University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5398/tasj.2023.46.2.249

Abstract

Chicken meat agroindustry is one of the industries that contribute to environmental impacts. The environmental impacts are due to the use of resources, energy, and waste along the chicken meat chain. This study aimed to evaluate the environmental impacts along the life cycle of the chicken meat chain from cradle-to-grave using a life cycle assessment (LCA) approach. The data inventory consisted of inputs and outputs from five sub-systems: feed production, broiler production on the farm, carcass production at the slaughterhouse, supplier distribution, and consumer use. The impact categories included global warming, acidification, and eutrophication. The process of impact calculation used the CML-IA (Centre of Environmental Science of Leiden University Impact Assessment) baseline method on the SimaPro software. The results showed that consuming 1 kg of fried chicken resulted in a global warming impact of 5.86 kg CO2 eq, acidification of 38.3 g SO2 eq, and eutrophication of 24.1 g PO43- eq. Feed production, litter, and energy usage were the most significant contributors to the environmental impacts. Improvement scenarios in reducing environmental impacts included reducing crude protein in feed, composting litter, installing inverters on refrigeration compressors, and electrical energy efficiency. The present study indicated the importance of environmental impact assessment on the entire chicken meat chain to improve environmental performance in the Indonesian chicken agroindustry.
Analisis jejak karbon pada produksi ayam potong dengan pendekatan life cycle assessment Azmi, Silmi; Junervin, Junervin; Rambe, Syamsuwarni; Hakim, Muhammad Luqmanul; Alu, Amina Kurniasi
AGROINTEK Vol 19, No 4 (2025)
Publisher : Agroindustrial Technology, University of Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/agrointek.v19i4.28806

Abstract

Broiler chicken agroindustry has significant potential to produce carbon emissions from using resources, energy, and waste. Awareness of environmental sustainability encourages the industry to improve its production system to be more environmentally friendly. Before improving the production system, carbon emission analysis needs to be carried out in the production process to assess its impact. This study aimed to evaluate the impact of global warming throughout the life cycle of broiler chicken products through carbon footprint analysis using the Life Cycle Assessment (LCA) method. The data inventory consisted of inputs and outputs from three subsystems: feed production, broiler chicken production, and chicken meat production. The impact calculation used the CML-IA (Center of Environmental Science of Leiden University) baseline method on the SimaPro software. The results showed that 1 kg of frozen packaged carcass produced a carbon footprint of 4.35 kg CO2 eq. Feed production, especially soybean meal, bio waste, and electricity use, were the primary sources of emissions in the three subsystems. Improvement scenarios to reduce the carbon footprint included substituting soybean meal with local feed ingredients, processing biowaste into compost, and increasing energy efficiency in the cooling system
Segmentasi Otomatis Nanopartikel pada Nanokomposit Karbon Menggunakan U-Net Junervin; Rambe, Syamsuwarni; Azmi, Silmi; Hakim, Muhammad Luqmanul; Alu, Amina Kurniasi
U-NET Jurnal Teknik Informatika Vol. 8 No. 2 (2024): U-NET Jurnal Teknik Informatika | Agustus
Publisher : LPPM Universitas Al Washliyah Labuhanbatu

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research aims to develop an automated approach for nanoparticle segmentation within carbon composites using a U-Net model. Nanoparticles in carbon composites are critical for enhancing the mechanical and electrical properties of these materials, but manual detection and segmentation are challenging due to their minute size and dispersed distribution. In this study, a U-Net model with an encoder-decoder architecture was employed to segment scanning electron microscope (SEM) images of palladium-carbon (Pd/C) nanoparticles. The dataset comprised 750 SEM images, exhibiting diverse nanoparticle shapes and sizes. Preprocessing steps included image cropping to eliminate irrelevant regions and the application of Otsu Thresholding to generate ground truth segmentation masks. Model performance was assessed using metrics such as Intersection over Union (IoU), accuracy, and loss. The U-Net model demonstrated high segmentation accuracy, achieving rates between 92% and 95% after 20 training epochs. Additionally, the model was deployed via a Flask web application for real-time prediction. This work significantly advances the efficiency and accuracy of nanoparticle segmentation, offering promising applications in material science and industrial research.