Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis of Learning Algorithms for Multilayer Neural Networks Muhammad Khoiruddin Harahap; Eko Pramono; Hilda Yulia Novita; Maharina Maharina; Dimas Sasongko; Candra Zonyfar
International Journal of Artificial Intelligence Research Vol 6, No 1 (2022): June 2022
Publisher : STMIK Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (328.455 KB) | DOI: 10.29099/ijair.v6i1.260

Abstract

The modern stage of development of science and technology is characterized by a rapid increase in the complexity of the created technical systems. The management of such systems requires the development of new management methods, since the modification and improvement of traditional management techniques does not always ensure the fulfillment of stringent requirements for management quality indicators. Classical control methods are mainly based on the theory of linear systems, while most real objects are non-linear. The problem of the synthesis of control systems under conditions of uncertainty is currently one of the central problems in the modern theory of automatic control. The complexity of the control object itself, structural, parametric and information uncertainties in the description of the control object, and the complexity of control problems, the multi criteria of optimization problems, the lack of possible analytical solutions, the need to take into account all the properties of disturbances, etc. The solution to this problem requires a search for alternative approaches to the design of control systems, one of which involves the introduction of neural network systems. Neural network control systems are a high-tech direction of control theory and belong to the class of nonlinear dynamic systems. High performance due to parallelization of input information in combination with the ability to train neural networks makes this technology very attractive for creating control devices in automatic systems. Neural networks can be used to build regulating and switching devices, reference, adaptive, nominal and inverse-dynamic models of objects, on the basis of which objects are studied, analysis of the influence of disturbances acting on an object, determination of the optimal control law, search or calculating the optimal program for changing the impact when changing the values of the parameters of the object and the characteristics of the input data. In addition, neural networks can be used to identify objects, predict the state of objects, recognize, cluster, classify, analyze a large amount of data arriving at high speed from a large number of devices and sensors, and the like. The ability to learn according to a given principle of functioning allows creating automated control systems that are optimal in terms of speed, energy consumption, etc. Naturally, in this case, it is possible to implement several principles of functioning and the transition from one to another. They are a universal tool for modeling multidimensional nonlinear objects and finding solutions to ill-posed problems.
SOSIALISASI HASIL PENELITIAN APLIKASI SISTEM PAKAR DIAGNOSA KECANDUAN GAME ONLINE MENGGUNAKAN METODE CERTAINTY FACTOR Elsa Elvira Awal; Deden Wahiddin; Anis Fitri Nur Masruriyah; Hilda Yulia Novita
Jurnal Pengabdian Masyarakat Nasional Vol 3, No 1 (2023)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/pemanas.v3i1.19974

Abstract

Semenjak pandemi Covid-19 masuk di Indonesia, hampir semua kegiatan dilakukan secara daring, termasuk pembelajaran dari tingkat sekolah dasar sampai universitas. Dampak dari pembelajaran daring adalah kebosanan pada peserta didik, oleh sebab itu peserta didik banyak yang melakukan kegiatan lain untuk menghilangkan kebosanan dengan bermain game online. Kondisi mental pada peserta didik rata-rata masih labil sehingga mudah lepas kontrol ketika sedang bermain game online, sehingga banyak peserta didik yang kecanduan game online. Adapun bentuk kegiatan sosialisasi ini dilakukan melalui pengarahan tentang pengetahuan dasar mengenai game, di antaranya dampak positif dan negatif game online. Maka pada kegiatan pengabdian kepada masyarajat ini akan dilakukan sosialisasi aplikasi deteksi kecanduan game online dengan menggunakan metode certainty factor. Hasil dari sosialisasi yang dilakukan pada SMK N 1 Klari adalah memberikan pemahaman terhadap siswa/siswi tentang game online serta memahami dampak berbahaya jika tidak disikapi dengan bijak. Dengan aplikasi yang kamu berikan diharapkan para siswa/siswi mampu menggunakan game dengan sewajarnya.
Performance Evaluation of Popular Supervised Learning Algorithms Towards Cardiovascular Disease Anis Fitri Nur Masruriyah; Hilda Yulia Novita; Cici Emilia Sukmawati
Jurnal Informatika Universitas Pamulang Vol 8 No 3 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i3.34103

Abstract

Many studies have discussed the advantages of supervised learning for dealing with extensive data on heart disease. However, only a few studies evaluate the performance of supervised learning algorithms. This research builds a classification model using supervised learning algorithms, including C4.5, Random Forest, Logistic Regression, and Support Vector Machine. The data processed is in the form of category data with character data types. The accuracy, precision, and performance evaluation results show that the Logistic Regression Algorithm has the most superior value compared to the others. On the other hand, it was found that the C4.5 and SVM algorithms had anomalous events. Although the accuracy and precision values of C4.5 were superior to SVM, SVM had better performance.